UNIVERSITY OF FUKUI
福井大学大学院 工学研究科博士前期課程

2021

新たなミカタが待っている

新しい視点、 新たな出会い、 広がる可能性。

大学院で得られること。

それは、研究生活の過程で生まれる「学生ならではの経験」です。

今までになかった出会いや体験は、

あなたの「ミカタ」となり、あなたの力になります。

私たちと一緒に、自分の可能性を確かめてみませんか。

新たな ミカタが 待っている

CONTENTS

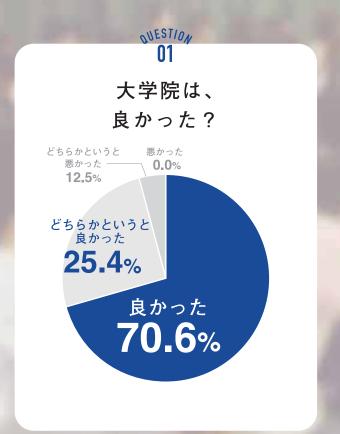
04 大学院進学のメリット 12 研究紹介

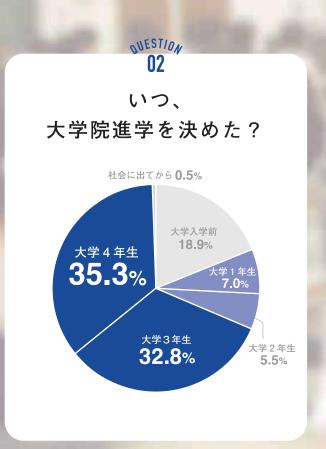
06 就職実績

08 教育システム

10 学内外からの高評価 22 就職支援

16 わたしの「ミカタ」 **24** 専攻紹介


19 学習支援制度


23 入試情報・学生支援

25 コース紹介

37 施設紹介

大学院に進学して

QUES

専門分野への理解を更に深めることができた。(機械工学専攻)

学部生の時とは違い、答えのわからないことについて取組む難しさを 学んだと同時に楽しさも感じることができてよかった。(機械工学専攻)

> 提案する力は非常についた。何より自分を見つめ なおす良い期間となった。(情報・メディア工学専攻)

就職活動における選択の幅が広がり、今後極めていきたい 分野を見つけることができた。自身の能力向上に充てる 時間を十分に取ることができた。(情報・メディア工学専攻)

自らの研究に対する責任感や問題解決に 対するアプローチの仕方など、今後の仕事に 生かせるような体験ができた。(物理工学専攻)

海外研修や研究発表など学部では成し得ないこと に挑戦でき、大きな自信をつけることもできた。大学 院への進学は良かったと思う。(電気・電子工学専攻)

> 大学院に進学した事で共同研究先とのミーティングの機会 が増え、社会人に近い生活を送ることができた(機械工学専攻)

4年の時は自分の実験の内容を深く理解できておらず不完全燃焼で終わっていたが、大学院に進学 したことで納得がいくまで研究することができた。また、「できるかどうかわからないこと」に挑戦すること の大切さを日々の研究から学べたことが自分にとっては何よりの収穫である。(材料開発工学専攻)

大学院で身についた能力は?

良かった点は?

研究データのプレゼンをすることで人へ伝えることの 難しさを知り、どのように構成し説明するか試行錯誤 したことにより力が身についた点。(材料開発工学専攻)

企業や他大学との共同研究で様々な実務能力がついた (ビジネスマナー、コミュニケーション能力、文書作成等)。多く の学会で発表することができた。主体的に研究を進めること ができ、論文を書くことで英語力が向上した。(物理工学専攻)

大学4年生では言われたことをやっただけだった が、今は自分がどんなことをしているのかを説明 できるほど知識と経験を得た。(物理工学専攻)

自由に研究できるスタイルの研究室であったため、自ら計画し行動する重要性を知る ことができ、自身の足りない所を指導してもらえたこと。(原子カ・エネルギー安全工学専攻)

物事に対して多角的な考え方ができるようになった。考え方の幅が広がった。人前で発表する 機会が多くなり、就職活動の際うまく行動、発言できたと思う。(原子カ・エネルギー安全工学専攻)

学部時代に気付かなかった問題点や課題に気付き、それ を解決することができたので良かった。(生物応用化学専攻)

学部では見えなかった風景が見えた。自分 がどういう立ち位置なのかをより深く理解 できた。(原子力・エネルギー安全工学専攻)

数多くの実績で 学生のキャリアアップを全力で支援

高い就職率

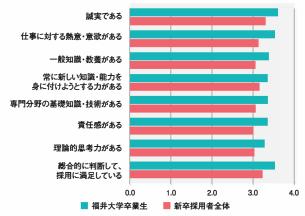
複数学部を有する 卒業生1,000人以上の国立大学で

13年連続 全国 1位

福井大学全体の実就職率 97.9%

実就職率ランキング複数学部を有する国立大学

	1位		2位		3位	
	大学名	就職率	大学名	就職率	大学名	就職率
2020	福井大	97.9	九州工大	95.0	群馬大	94.7
2019	福井大	97.0	岐阜大	94.4	九州工大	94.0
2018	福井大	97.3	岐阜大	94.8	三重大	94.0
2017	福井大	97.4	九州工大	95.5	秋田大	93.9
2016	福井大	96.8	九州工大	95.8	三重大	94.3
2015	福井大	96.1	群馬大	94.0	九州工大	93.9
2014	福井大	96.7	九州工大	94.4	東京工大	93.8
2013	福井大	95.8	名古屋大	94.2	東京工大	93.5
2012	福井大	95.8	九州工大	95.3	名古屋大	93.5
2011	福井大	94.7	岐阜大	93.1	名古屋大	93.0
2010	福井大	94.3	九州工大	93.9	東京工大	91.3
2009	福井大	97.2	九州工大	95.8	岐阜大	94.8
2008	福井大	95.3	九州工大	94.6	岩手大	90.4

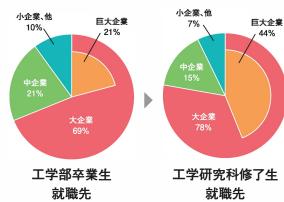

実就職率は大学通信調査の「全国大学就職率ランキング」 実就職率=就職者数÷(卒業者数-進学者数)

高い人材力

■ 11 >>> 就職先から高評価

人間カ・学力ともに 高水準

本学の工学研究科で学ぶ大学院生は、専門性を高めるととも に、問題解決能力や実行力など総合的な実践的能力を修得しま す。修了生は就職先企業等から、高い評価を得ています。



平成28年度~30年度に工学研究科修了生を採用した企業等からの評価 (調査時期 令和元年8月)

より拡がる企業の選択肢

工学研究科修了生は、工学部卒業生よりも、規模の大きな企業 に就職する傾向があります。

巨大企業=従業員3,000人以上 中企業=従業員100~299人

大企業=従業員300~2.999人 小企業=従業員99人以下

調査対象:令和元年度工学部卒業生、工学研究科修了生

大学院修了生の就職データ ~就職先過去5年間TOP10~

各専攻の就職先上位の企業です。県内外問わず、業界でも規模 の大きな企業に就職できていることが分かります。

※過去5年間の集計データから就職者数の多い順に掲載

機械工学専攻

アイシン・エィ・ダブリュ株式会社

トヨタ車体株式会社

株式会社荏原製作所

株式会社豊田自動織機

三菱自動車工業株式会社

中菱エンジニアリング株式会社

日産自動車株式会社

日立造船株式会社

豊田合成株式会社

村田機械株式会社

トヨタ紡織株式会社

セーレン株式会社

日東シンコー株式会社

株式会社オンダ製作所

株式会社福井村田製作所

生物応用化学専攻

電気·電子工学専攻

アイシン・エィ・ダブリュ株式会社

アイシン精機株式会社

北陸電力株式会社

関西電力株式会社

日新電機株式会社

豊田鉄工株式会社

スズキ株式会社 三菱電機株式会社

パナソニック株式会社

株式会社福井村田製作所

小林化工株式会社

住友理工株式会社

アイシン化工株式会社

アイカ工業株式会社

セーレン株式会社

塩野フィネス株式会社

前田工繊株式会社

日東シンコー株式会社

福井山田化学工業株式会社

井村屋グループ株式会社

物理工学専攻

京セラ株式会社

イビデン株式会社

セーレン株式会社 ニチコン株式会社

株式会社パロマ

株式会社福井村田製作所

住友電装株式会社

日本電産テクノモータ株式会社

日本電産株式会社

豊田鉄工株式会社

建築建設工学専攻

大和ハウス工業株式会社

株式会社能谷組

住友林業ホームテック株式会社

福井県庁

中日本高速道路株式会社

株式会社サンワコン

株式会社伊藤工務店 株式会社岡村製作所

西日本旅客鉄道株式会社

株式会社大林組

三協立山株式会社 日華化学株式会社

繊維先端工学専攻

材料開発工学専攻

アイシン・エィ・ダブリュ株式会社

株式会社東海理化電機製作所

トヨタ車体株式会社

住江織物株式会社

前田工繊株式会社

KBセーレン株式会社

アイシン・エィ・ダブリュ株式会社

株式会社福井村田製作所

日本特殊陶業株式会社 トヨタ紡織株式会社

株式会社SHINDO

日本毛織株式会社

日信化学工業株式会社

原子力・エネルギー 安全工学専攻

関西電力株式会社

国立研究開発法人日本原子力研究開発機構

豊田合成株式会社

MHにコークリアシステムズ・ソリューションエンジニアリング株式会社

株式会社千代田テクノル

三菱電機株式会社

日本原子力発電株式会社

日本原燃株式会社

中日本高速道路株式会社

北陸電力株式会社

情報・メディア工学専攻

メルコ・パワー・システムズ株式会社

株式会社アートテクノロジー

株式会社ジークス

株式会社天晴データネット

株式会社富士通北陸システムズ

デンソーテクノ株式会社

ニチコン株式会社

株式会社ヒップ

三菱電機メカトロニクスソフトウエア株式会社

富士通株式会社

知能システム工学専攻

アイシン・エィ・ダブリュ株式会社

豊田合成株式会社

三菱電機メカトロニクスソフトウエア株式会社

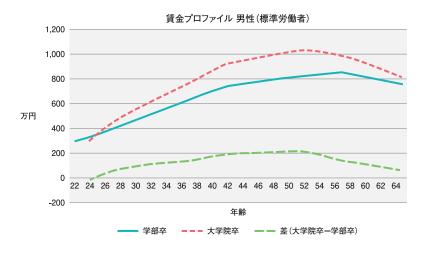
セイコーエプソン株式会社

パナソニック株式会社

株式会社アドヴィックス

日本特殊陶業株式会社

アイシン・エィ・ダブリュ工業株式会社


アイシン精機株式会社

セーレン株式会社

学部卒業者と大学院修了者の年齢ー賃金プロファイル

全国的に、大学院修了者の方が学部卒 業者よりも生涯賃金収入が高いことが、内 閣府経済社会総合研究所発行の論文に おいて発表されています(右図は、男性の 正規労働者で転職がない場合)。大学院 修了者と学部卒業者の生涯賃金収入の 差は、男性の場合には4,846万円、女性 の場合は4.334万円と報告されています。

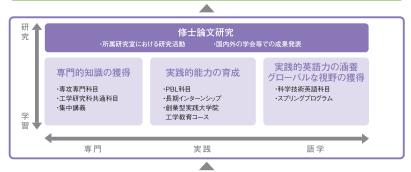
出典: 柿澤 寿信、平尾 智隆、松繁 寿和、山﨑 泉、乾 友彦"大学院卒の賃金プレミアム 一マイクロデー タによる年齢一賃金プロファイルの分析一" ESRI Discussion Paper No.310 (2014).


意欲を「確かな自信」に変える 教育システム

夢を世界でかたちにする技術者、Global IMAGINEER をめざして

IMAGINEERはImagine(こころに描く)と Engineerからなる造語で、私たちが教育・ 研究・社会貢献を行う際の拠り所としている 言葉です。福井大学工学部・工学研究科 には工学のほぼ全領域にわたる多彩な人 材が集まり、学生と教職員が一体となって

個性と志に磨きをかけています。


工学研究科博士前期課程は、改組前は10 車攻体制でしたが、2020年度に右図の3 専攻14コース体制に改組されました。特色 ある共同教育研究施設と連携しながら、ユ ニークな教育研究プログラムを用意し、学 生の意欲を「確かな自信」に変えるサポート をしています。博士後期課程の総合創成工 学専攻では、専門は9分野に分かれて、最 先端の科学技術研究を通じて持続可能な 社会の実現に貢献しています。

最高の評価を受けた 先進的な教育システム

皆さんが「博士前期課程=修士論文研究 の場」というイメージを持っているとすれば、 それは正確ではありません。修士の学位は、 修士論文研究の遂行に加え、体系的な力 リキュラムに基づいた大学院教育を受ける ことにより授与されるものなのです。改組後 の工学研究科博士前期課程では、「将来 の産業構造の変革に対応できるスペシャリ ストとしての専門の深い知識の修得」と「分 野の多様性を理解し異分野との融合・学 際領域の推進も見据えることができるジェネ ラリストとしての幅広い知識・視野の修得」 を教育の2大柱に据えています。このため、 産業分野を「ものづくり」「社会インフラ」「情 報化社会基盤」の3グループに括り、各グ ループに対応する分野横断型の専攻を3つ 設置しました。専門を深掘りするスペシャリス トと分野横断型のジェネラリストの育成のた め、いずれの柱にも多くの科目を擁していま すが、それらを無計画に履修しても効果は上 がりません。専門知識と幅広い知識・俯瞰 的視野をバランスよく身に付けるためには、

各自の研究テーマも考慮した上で、どのよ うな科目をどの時期に履修するか、というこ とをよく練っておくことが必要です。工学研 究科博士前期課程では、計画的・体系的 な履修を学生と教員が一緒になって考える 「カリキュラムのオーダーメード化 |を実施し ています。これは、入学直後に各学生に対 してPOSコミティと呼ばれる指導教員集団 (最低3名)が組織され、学生とPOSコミ ティが面談を重ねながら2年間の履修プラ ンを練り上げていく、というものです。これは 大変に手間のかかるシステムであり、その実 施は恐らく日本では初めてのことです。他大 学の注目度も高く、日本学術振興会による 審査を受け、4段階評価の中で最上位の評 価を得ました。このように、工学研究科は先 進的な教育システムを実践しており、その実 績は高く評価されています。なお、修士論文 研究については、工学研究科の研究指導 計画に基づき、皆さんが自主的に修士論文 研究を遂行できるようPOSコミティが2年間 研究指導を行います。

~ 学生一人ひとりにとって最高の大学院教育を目指して~

ここには夢をカタチにする技術者を育む、ユニークで確かなシステムがあります。 そんな福井大学大学院工学研究科ならではの"Imagineering Factory"をご紹介しましょう。

ユニークな 学習プログラム

工学研究科博士前期課程の大きな特色 は、前ページで述べた通り、スペシャリストと ジェネラリストの両方の知識・能力を併せ持 つ人材を育成することにあります。このた め、右図のようなユニークなプログラムが構 築されています。全ての学生は、所属する専 攻内で前ページに示されるコース(=スペ シャリストとしての深い専門知識を得るため の履修区分)を自らの目的に応じて選択し ます。ジェネラリスト育成のために、各専攻 には右図に示す4つの科目群が設けられて います。これら各科目群は、複数のコースを 横断した科目で構成されており、学生は各 専攻の4つの科目群から最低1科目は履修 し、分野横断的な知識を修得します。専攻を またいで他専攻の科目を履修することもも ちろん可能です。一方、スペシャリスト育成 のために、各コースが指定した2つの重点 科目から集中して科目を履修し専門性を高 めます。その他に工学研究科共通科目と各 専攻共通科目を履修しながら、POSコミ ティの研究指導のもとで修士論文研究を 遂行します。修論研究遂行には、ジェネラリ スト・スペシャリスト両方の知識や視点が必 要です。

POSコミティによるカリキュラムのオーダー メード化は教育の「枠組み」ですが、その「中 身」も大変特徴的です。まずPBL(Project Based Learning)科目が挙げられます。こ れは、設定されたテーマに学生が自主的に 取り組むことを通し、創造力、自己学習力、 問題発見・解決能力、およびコミュニケー ション能力などの実践力を身に付ける科目 です。「専門性を高めるスペシャリスト育成 型」「異分野融合・学際性を高めるジェネラ リスト育成型」「地域や産業界等との連携 型」などのタイプがあり、参加した学生から は「多くの問題に直面する一方、問題解決 のために自分自身で考え行動したことは講 義のみでは得ることができない貴重な経験 であった」といった声が多く寄せられていま す。また、企業における2ヶ月程度の体験学 習を通して産業現場での取り組みを理解し 実践的能力を育む科目として「長期インター ンシップ」があります。企業に派遣する前後

には大学内での学習があり、しっかりしたサ ポートのもとで派遣するため安心して参加 できます。学生からは「仕事に対しての取り 組み方や考え方、またこれからの人生で必 要なことなどを学べた。進路選択をする上で 大変貴重な経験になった といった声が寄 せられています。学生を対象とした「ビジネス プランコンテスト」も毎年実施しています。ま た、海外留学の促進と国際性溢れる大学 院生の育成等を目的とした「スプリングプロ グラム」では、春期休業期間を利用して中 国の学術協定校に短期留学します。このよ うに、Imagineerに必要な実践力を育む仕 掛けを数多く用意しています。もちろん、専 門知識を学ぶ科目も充実しています。これら をどのように組み合わせて活かしていくか戸 惑うかもしれませんが、ご心配なく。カリキュ ラムのオーダーメード化がそのお手伝いをし ます。

工学の専門知識を社会で応用するために は、技術経営に関する知識が欠かせません。 改組により産業創成工学専攻には経営技 術革新工学コースが新設されましたが、他 専攻・他コースの学生のために、産学官連 携本部との協力のもと、副専攻として「創業 型実践大学院工学教育コース」を設けてい ます。本コースは、「起業家精神を備え、ビシ ネス感覚や実践的スキルを有する視野の 広い人材の育成」を目的としており、どの専 攻の学生も学ぶことができます。知的財産、 マーケティング、マネジメントなどの講義と、 ビジネスプラン作成や試作・試販売などの 実習からなる体系的な「技術経営カリキュ ラム」が、企業経営者など学外講師の協力 も得て開講されており、一定の要件を満た した学生には、学長名で「技術経営カリキュ ラム修了証 | が発行されます。

専攻科目群

産業創成工学専攻

MOT 科日群 材料・加工工学科目群 サステナブル ケミストリー科目群 ライフサイエンス科目群

安全社会基盤工学専攻

社会インフラ科目群 エネルギー科目群 リスクマネージメント 科目群 安全設計科目群

ヒューマンサイエンス 科目群 コンピュータサイエンス 科目群 物性物理科日群 数理情報科学科目群

専攻共通科目群

特別演習及び実験Ⅰ・Ⅱ、特別講義Ⅰ・Ⅱ、ゼミナールⅠ・Ⅱ

研究科共通科目							
A群	外国語科目						
B群	インターンシップ科目、PBL科目、生命科学科目						

フィールドワーク・地域 貢献型 ■

大野市六間通りの空間デザイン

外部人材·機関活用型 ■

原子力施設における原子力材料研究実習

実践基礎技術習得型 |

組み込みシステム設計

組み込みプロセッサを用いたFPGAベースの

ロボカップ・サッカーロボット開発 チャレンジ・プロジェクト

専門性を深め、実践力を高める大学院教育

博士前期課程では、コースワーク(授業)を受けるとともに、専門分野の課題に長期的に取り組みます。学会発表などを経験 することで、プレゼンテーション能力や、問題発見・解決能力などが大きく向上します。コースワークも専門性と実践力の両 方を鍛える構成となっています。専門性を深め、実践力を高める大学院教育は、各方面から高く評価されています。

博士前期課程の学生による評価

平成21年度と27年度に実施した「福井 大学の教育・研究に対する意識・満足度 調査」において、博士前期課程で学んだ学 生の多くが専門知識・技術と実践的能力 のいずれについても修得できたと回答して います。平成27年度の方が肯定的回答の 割合が高いことは、教育の質が向上してい ることの証です。

右の質問項目以外に対する回答状況(平成27年 度の調査で"「ある程度~十分」身についた"と回 答した割合。括弧内は平成21年度からの変化)

新しいアイデアや 発想を生み出す力

92.6% (8.3%增加)

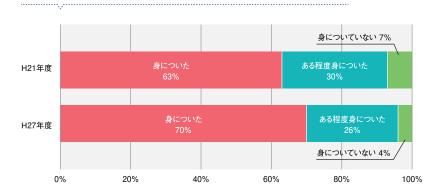
文章作成や文章 表現の力

96.3% (7.1%增加)

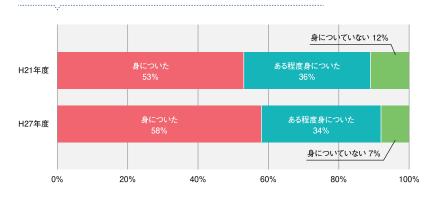
社会や技術の変化 に対応する力

92.5% (5.0%增加)

広い視野で物事を 多面的に考える力

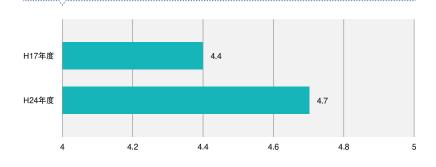

97.2% (3.8%增加)

外国語でコミュニ ケーションするカ


74_1% (19.1%增加)

調査対象:平成22年3月と平成28年3月に 博士前期課程修了の学生

Q. 専門知識や技術が身につきましたか?


Q. 実践的な能力が身につきましたか?

外部の有識者による評価

工学部・工学研究科では7年ごとに外部 の有識者(企業関係者、大学関係者など) による外部評価を受けています。教育内 容・方法改善への取り組みについて、高い 評価を得ています。

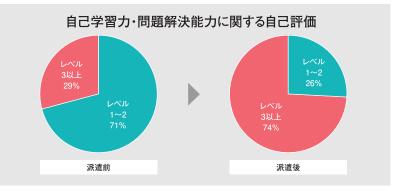
Q. 教育内容・方法改善への取り組みは適切ですか?

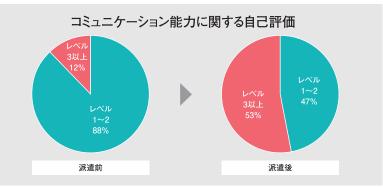
工学部と工学研究科をあわせ5点満点で評価

海外派遣による学生の成長

国際会議における口頭発表などのために大学院生が海外派遣されることは珍しくありません。優秀な発表により表彰される学生も毎年います。

第49回米国機械学会 配管と圧力容器強度に関する国際会議において第 23回Rudy Scavuzzo杯争奪学生セッションの学士・修士部門第1位となっ た森紘亮さん(原子力・エネルギー安全工学専攻)


台湾で開催された2017 International Symposium on Optomechatronic Technologyにおいて、73件の発表中トップの評価を得て、Best Paper Awardが授与された坂野琢弥さん(知能システム工学専攻)。


海外派遣により、コミュニケーション能力な どの汎用的技能も大きく向上します。平成 27年度に海外派遣された工学研究科の 学生のコンピテンシー(能力)の変化を、 「福井大学グローバル・コンピテンシー・モ デル」により自己評価した結果、海外派遣 による各種コンピテンシーの大幅な向上が 明らかになりました。

※「福井大学グローバル・コンピテンシー・モデル」で は、「自己学習力・問題解決能力」、「コミュニケーショ ン能力(語学力含む)」、「専門的知識・能力」などの7 つの能力等を、ルーブリック方式によりレベル1~5 の5段階で自己評価します(レベル5が最高)。「自己 学習力・問題解決能力」の場合、レベル2と3は以下 のように設定されています。

レベル2:現状を分析し、目的や課題を明確にして課 題解決のための具体的な目標、計画を立 てることができる。

レベル3:課題解決に向けた目標、計画のもと、周囲 の人にも働きかけて協力を得ながら確実に 行動を起こすことができる。

大学改革支援・学位授与機構による評価

工学研究科は、平成22年度~27年度 (第2期中期目標期間)の教育に関して、 独立行政法人大学改革支援:学位授与 機構より高い評価を得ました。

独立行政法人大学改革支援・学位授与機構による全 体の評価結果は、以下からご覧になれます。

http://www.niad.ac.jp/n_hyouka/kokuritsu/kekka_h28/

※調査対象の831組織(全国の国立大学法人等の学部・研究科等)の中での評価

材料開発工学専攻

博士前期課程1年(学年は取材時のもの) 藤田 千秋さん

成分分子の解析で 高品質な材料・製品を

マイクロカプセルやエマルション(水と油が洗 剤などで混ざりあった状態のもの)を質量分 析計で直接測定し、ミクロな領域に存在する 成分分子を直接解析する研究を行っていま す。マイクロカプセルは、例えば衝撃や汗に反 応して香る洗剤などに使われています。現在 は、マイクロカプセルの中に含まれる成分の 解明や粒子の大きさなどの測定を行ってお り、今後は成分の放出挙動なども調べていく 予定です。

当研究室は分析化学が主体ですが、それは 「分析方法をつくる | ことが課題であるとも言 えます。先程挙げたエマルションは非常に不 安定な物質で、従来の測定法では評価でき ないこともしばしば。世間には新しいもの・測 れないものが溢れているので、「測れるように するには」「より簡便に測るには」「より低コス トで測るには」といった観点から分析方法を開 発・改良する必要があるのです。直接的な製 品開発も重要ですが、その製品がより長く安 定するかという"製品評価"もまた重要です。 中身の分からない物質の評価法を作り出した り、わかっている物質から一度の測定でより多 くの情報を引き出したり。そうした研究で高品 質な材料・製品の開発に貢献しています。

全力投球できるのは 自分で決めた研究だから

先輩の知識量を目の当たりにして、「研究職 に進むなら大学院で本当の勉強をしないと!」 と思い進学しました。大学院生になって大きく 変わったのは、後輩たちの指導もしなくてはい けないことですね。学部生の頃は装置のこと も全く分からなくて、先輩方に言われるままに やっていましたが、後輩に指導することで正し く理解できるようになりました。

分析研究室なので、分析する素材も自分で 作る必要があります。専門外の幅広い知識を 独学で習得しなくてはいけないのが大変です が、自分なりの工夫をしながら自分で決めたこ とを研究するのは本当に楽しいです。先生か らもずいぶん任されるようになり、自分の手で 研究しているという実感が日に日に強くなって

就職活動は、化学系・繊維系のメーカーを中 心にアプローチしています。分析で培った知 識や思考力などを研究開発で活かしたいと 思っています。

知能システム工学専攻

博士前期課程1年(学年は取材時のもの) 村井 翔太さん

"原発用"は嘱望される、 地元密着のニッチな領域

「人の動き」をテーマにパワー・アシストスーツを 研究し、カセンサーのデータを基にして、より負 荷を減らすための制御の仕組みを作っていま す。近年、運送業者向けのものが出回ってい ますが、私が開発しているのは原子力発電所 の除染作業用。除染作業者は10~20kgの 鉛エプロンの上に防護服を着て、さらに物を運 ぶなどの作業をするので、その負荷の軽減が目 的です。現時点では筋電位を使う「HAL |が性 能面において群を抜いていると言われていま すが、防護服は非常に気密性が高く大量に汗 をかくため、センサーがずれたり、汗で筋電位が 測れなかったりするので、筋電位以外を使う力 センサーやモーションセンサーで進めています。 他にも、大きいカイト(凧)での風力発電や小型 の人型ロボットとのコミュニケーションなど、細か く分けるとかなり幅広く研究しています。もともと

「災害時に人を助けるロボット」に興味があって 専攻を選んでいたので、研究室に入って「これが やりたかった!」と感動しました。今夏にはラスベ ガスで行われるウェアラブルマシーンなどの学会 に出席予定なので、日々準備を進めています。

本望の研究を通して 実践力を身につける

大学院に進学した一番の理由は、学部4年 の時の研究が自分の中で中途半端だったこ とです。今は、先輩・私・後輩の3人1チームで 取り組んでいて、自分1人では無理でも2人の おかげで達成できたと感じることが多いです。 昨年はスーツの大改造を行ったのですが、セン サーのデータを見るだけでは装着感までは分 からないので、装着者になって、きちんと感想 や改善点を伝えてくれたのがありがたかったで す。特に、「今日のは良かった」など言葉で感想 を聞くのが、一番モチベーションが上がります。

就活を始めて、企業に求められるのは研究内 容ではなく、問題解決への取り組み方だと分 かりました。研究を続けていれば当然課題に 行きあたるし、解決しなければいけない。学び を通して身につけた、自分なりの考察と解決 へのプロセス作成が役に立つと感じました。あ と重要なのは説明力です。手伝ってもらうにも 教えてもらうにも、問題点を分かりやすく説明 しないと相手に伝わりません。自分なりに要点 をまとめ、相手に自分の意図を理解してもらえ るように伝えるスキルが、日々の実践を通じて 身についたと実感しています。

原子力・エネルギー安全工学専攻

博士前期課程1年(学年は取材時のもの) 堀田 理穂さん

誰も手がけていない 未踏の手法を探し出す

原子物理学を応用した、「中性子輸送計算 手法」を開発する研究に取り組んでいます。 私が手がけているのは、既存の手法とは異な り、あくまで新しい計算手法を導き出す研究。 自分で考えた理論から理想とする中性子の 動き(流れ)が実現できるのかをシミュレーショ ンソフトを使って検証しながら、新しい計算手 法を生み出すというものです。

原子力発電は、ウラン原子に中性子が当た ることで発生するエネルギーを利用した発電 方法ですが、従来の計算法だと計算値と実 際値の間に若干の誤差が生まれるので、原 子炉内の物理的な動きを、より現実のものに 近い数値で導けるような計算方法を模索して います。常に「どうすれば複雑な形状を正確に 表現できるか」を考えていて、シミュレーション で再現できた時の喜びはひとしおです。うまく いかないこともありますが、新しいものを生み 出す研究なので、「誰も見つけていない方法を 見つける」というだけでもやりがいがあります。

熱誠に学び得た 実践的な知識で地域貢献

学部生の頃から物理を履修していましたが、 新しい方法や手法を自分で考えて作り出して いくことが本当に楽しくて、私に合っていると 感じていました。しかも私は敦賀出身なので、 自分の興味のある分野で地元に貢献できれ ばという思いもあり、大学院に進学し、この研 究に取り組みました。大変なのは、身近に同じ ような研究をしている人がいないので、相談し づらいことですね。何か分からないことがある 時には、先生と1対1でディスカッションしなが ら進めています。

学部での勉強は実践的な研究ができる機会 は少ないです。研究が楽しいと感じたなら大学

院への進学をおすすめします。実際に知識を 応用したり、新しい知識を必要に応じて学ん だりできるので、より本質的なことに触れられ 意欲的に取り組めます。あとは、とにかく英語 力が身につきます。私自身、留学とホームステ イを経験しましたが、研究室に海外からの留 学生が多いことから日常的に英語をつかう機 会があります。自然と英語力が上がりました。

電気・電子工学専攻

博士前期課程2年(学年は取材時のもの) 石丸 大樹さん

コンパクトで省エネな 次世代の半導体開発を

近年、青色LEDなどで注目されるようになった 「窒化物半導体」を作る研究をしています。半 導体は、エアコンを快適な室温で運転させた り、自動車の安全性を高めたりと多様な分野 の機器の制御に活用されていて、私たちの生 活をより豊かに、スマートにしてくれるものだと 言えます。

そもそも半導体とは、シリコンなどの結晶基板 にガリウムなどの金属を結晶化させたもの。基 板の上に極薄の結晶を作り上げる技術を「エ ピタキシャル成長」と言い、より良い性能、品 質の半導体を目指すうえで欠かせない研究で す。しかし、従来のシリコンなどでは素材による 性能的な限界があるので、私は安定性のある サファイアなどを基板に用いて、さらなる性能 の向上を目指した研究を行っています。サファ イアは高温でも安定しているという特性があ り、冷却ファンを使う必要がなくコンパクト化が 実現可能。しかも従来より少ないエネルギー で動かせるため、併せて省エネも実現できる のです。

「デバイス」の力で 一歩先行く明日を

もともと電気の力で大きな物を動かすパワー エレクトロニクスが好きで、とことん学びたいと 思っていました。パワーエレクトロニクスには、 大きな役割を担う3本柱「制御 | 「動力 | 「デバ イス」があるのですが、「制御」や「動力」は個人 的に楽しみながら実践しているので、本格的に 学びたいと思っていた[デバイス]を扱う研究 室に入りました。結果が良くなっていくのはも ちろん嬉しいですが、思うようにいかなくても、 原因を考え、改良方法を探っていくことも楽し いです。好きな分野を突き詰めているという実 感が、今のモチベーションに繋がっています。

大学院では、何よりも「自分で課題を見つけて 筋道を立て、自主的に解決する力」が身につ きました。あとは、身につけた知識を応用して アプローチする力と効率的に研究を行うため のスケジューリング能力ですね。実験で使用 する機械が共有のものなので、スケジューリン グ能力は必須です。来年からは、今まで学んだ ことを十分に活かせる環境で働けることに なったので、皆さんの生活をより豊かにできるよ うな製品づくりに貢献していきたいと考えてい ます。

大学院だから出会えた

わたしの「ミカタ」

大学院を修了し、社会で活躍されている先輩方に、

当時の研究生活で得られた「味方」、身についた「見方」をうかがいました。

自分の成長につながる「ミカタ」は、思いがけない所にあるのかもしれません。

様々な知識を「点」で終わらせず あらゆる分野と関連付ける

大学院でご指導いただいた先生の言葉で、生徒達に教える場面で常に意識していることです。私は理科の教員を目指し、専門の物理は人並み以上に勉強したつもりですが、物理だけできても仕方ないんです。興味がない人、苦手な人にも伝えるためには単に現象を説明するより、「ギターはこんな原理で音が出ますよ」とか「メダルを獲ったカーリングは擦れば擦るほど摩擦が・・・」というように興味ある分野と結びつけた方が楽しんで学んでもらえます。それに気づいてから物理と物理以外の分野の繋がりを意識するようになり、既に持っている知識との関連付けで勉強が捗りました。

仁愛女子高等学校 勤務 (動務先等は取材時のもの) 佐藤 直哉 さん (物理工学専攻 2017年修了)

不成功は、「失敗」ではなく 「うまくいかない」という新発見

所属していた研究室は本当に雰囲気が良く、研究が上手くいかない時は仲間同士で励まし合い、次の段階に進めば一緒に喜び合うような仲でした。そんな中で、一番学んだのは「何事も楽しむ」という精神。ネガティブ思考になると、どうしてもモチベーションは下がってしまいます。失敗を失敗と思わずに、「出来ないという新発見だ」とポジティブに考えることが次に繋がる秘訣だと思います。現在も仕事で難しいことを言われますが、大学院生活で身についた「何とかなるだろう、楽しんでやろう」という気持ちが、日々頑張る動力源になっています。

株式会社オンダ製作所 商品開発本部 勤務 (動務先等は取材時のもの) 中野 拓弥さん (材料開発工学専攻 2015年修了)

徹底的な教えから学んだのは、 数値1つにも「責任を持つ | ということ

私が所属していた研究室のゼミは「こんなに長時間にわたるのはこの研究 室しかない」と思う程で、どんなに長くなっても先生は決して妥協されません でした。ゼミでは、文章の書き方、数式の導き方、実験結果に対する考察 などを徹底的にご指導いただき、自分の研究結果に対して責任を持つと いう研究者としての心構えを学びました。また、常に「どのように説明したら 相手に伝わるか」を意識するクセも身に付き、プレゼンの機会が多い現在 の仕事でとても役に立っています。このように大学院時代に培った経験が 今の私の根幹にあり、ご指導いただいた先生に心から感謝しております。

ブラザー工業株式会社

開発センター 技術革新部 勤務 (勤務先等は取材時のもの)

小栗 諒子さん (原子力・エネルギー安全工学専攻 2013年修了)

適切で分かりやすい表現は 推敲を重ねることで生まれる

大学院での研究は非常に専門的になるため、使われる単語も難しくな りがちです。用語の説明においても言葉を適切に選ばなければ、ニュア ンスが間違って伝わってしまうこともしばしば。学会や報告会での分かり やすい説明に、より良い文章や図解を用いることは必要不可欠ですが、 そう簡単に分かりやすい表現が生み出せるものではありません。そこで 大切になるのが「推敲」です。自分が納得できるまで繰り返すことで、少 しずつ自分が求める表現に近づけることができます。社会人になっても 重要な力ですので、大学院生のうちに培っておいて損はありません。

中菱エンジニアリング株式会社

航空宇宙事業部 研究試験部 空力・機器試験室 勤務 (勤務先等は取材時のもの) 堀部 真司さん (機械工学専攻 2016年修了)

行動の選択肢が増え、 より良い成果を得る

大学院の研究では、数値計算の結果が目標とした精度にいかに近づ いたかを評価していました。もちろん未達成の時もありましたが、そこで終 わりではありません。目標との差はどの程度か、計算時間はどれくらいか、 他の研究結果と比べるとどうなのか等、様々な観点で分析することが求 められます。このように多面的な観点で得られた結果を見ることで「複数 の成果」という収穫に繋がり、次の行動に結びつけやすくなります。「多 面的な見方」は、就職活動でも活かされましたし、社会人となった今、仕 事の幅を広げるために大切だと感じています。

メルコ・パワー・システムズ株式会社 技術本部 技術部 ビジネスチーム 1 勤務 (勤務先等は取材時のもの) 竹本 貴紀さん (情報・メディア工学専攻 2016年修了)

仲間とのやりとりの中に ヒントが 眠っていることも

大学院の同期はそれぞれ別の研究をしていましたが、同じ研究室に所 属しているのでテーマや内容は近いものがありました。そのためお互い に相談をしながら研究を進める仲の良い研究室で、誰かがうまく行って いない時は気分転換も兼ねて、行き詰っている部分を聞いては互いの 悩みを共有したりしていました。他愛ない会話の何気ない一言がアプ ローチを変えるきっかけになることもあり、自分の研究テーマ以外にも広 く興味を持ち、様々な立場の意見・視点に触れることが状況を打開する 一手になることを実感しました。

三菱電機株式会社

系統変電システム製作所 技術開発部 大電力・機械技術課 勤務 (勤務先等は取材時のもの) 木村 涼さん (電気・電子工学専攻 2016年修了)

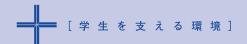
手厚い指導はもちろん、 励ましや助言に支えられて

私は、大学院の研究室内に同期がいなかったため、先生とマンツーマン の環境で学ぶことができました。研究に関する手厚い指導はもとより、 一息つくタイミングでお茶を飲みながら世間話をさせていただくなど、一 人でも孤独を感じることなく過ごせたのは、他でもない先生のおかげだと 感じています。先生には「結果を出すことはもちろん、そこに行きつくまで のプロセスも大切にしなさい」と教えていただきました。思うような結果が 得られず、焦っている時こそプロセスを大切にしなければいけないという 教えは、実社会でも折に触れ役立っています。

井村屋株式会社

生産管理部 SCMチーム 勤務 (勤務先等は取材時のもの)

濱田 幸さん(生物応用化学専攻 2014年修了)



やる時はやる、遊ぶ時は遊ぶ すべてが"経験"になる

私がいた研究室はコアタイムとなる"出勤時間"が決まっていて、まるで 仕事のようでした(笑)。でもその時間が終わったら思いっきり遊ぶという メリハリが利いていました。先生も運動が好きな方で、昼休みはバスケを したり夏にはプールに入ったり。でも「やる時はちゃんとやらないとクビに するよ」と仰っていて、けじめを体現したような方でした。ずっと頑張ること はできないし、休まないと疲れてしまうし、そのバランスが重要なんです。 居心地の良い研究室で、人生の根幹を学んだ時間だった気がします。

福井県立奥越明成高等学校 勤務 (勤務先等は取材時のもの)

森田 康平さん (知能システム工学専攻 2013年修了)

あなたのやる気をしっかりサポート。

「家庭の事情を考えると大学院進学は…」なんて考える人も多いようですが、 大学院には、学部以上に経済的サポート態勢が充実しています。

授業料免除制度

経済的理由であきらめることはありません。

大学院の授業料は学部と同額の年額 535.800円です。この金額を5月と11月に 半期分(267,900円)ずつ納めることに なっていますが、授業料免除の制度があり ます。

この制度は、経済的理由により授業料の 納付が困難であり、かつ、学業優秀と認め られる学生については、本人の申請に基づ き選考のうえ、授業料の全額あるいは半額 が免除されるというものです。

また、授業料免除制度は、授業料の納付

前6ヶ月以内に、学資をご負担頂いている 方(学資負担者)がお亡くなりになった場 合や、学生あるいは学資負担者が風水害 等の災害を受けるなどといった特別な事情 により授業料の納付が著しく困難になった 場合にも適用されます。

令和元年度後期実績では、申請者130名 のうち、111名が全額免除、13名が半額 免除となり、9割の申請者が免除許可にな りました。

学生ポータル及びホームページにて授業

授業料免除制度についてのご質問は、学生サ ビス課までお気軽にお問い合わせください。

料免除の申請についてお知らせしますの で、この制度の利用を考えている学生は必 ず確認してください。

授業料 535,800円/年

267,900円

11月 納め

267,900円

又は

免除

- 経済的理由により授業料の納付が困難であり、かつ、学業優秀と 認められる学生
- 授業料の納付前6ヶ月以内に、学資をご負担頂いている方(学資 負担者)が亡くなった場合
- 学生あるいは学資負担者が災害を受けるなどの特別な事情によ り、授業料の納付が困難になった場合

授業料免除状況

32.87175018-1770											
		博士前期					博士後期				
		学生数	ch =± */r	☆ ア△ヾ☆ ↓々 ★	免除許可者		24 11 *h	rh =± ±⁄	☆ ワ△\☆ サク ≭	免除許可者	
		子生奴	申請数	免除適格者	全額免除	半額免除	学生数	申請者	免除適格者	全額免除	半額免除
30年度	前期	573	133	129	111	18	71	22	22	22	0
30年度	後期	586	153	129	122	7	71	17	17	16	1
令和 元年度	前期	560	139	118	118	0	64	22	21	21	0
	後期	563	130	124	111	13	68	26	25	25	0

奨学金制度

人物・学業共に優秀かつ健康であり、経済 的理由により修学が困難と認められる者 に対して、独立行政法人日本学生支援機 構及び公益法人の奨学金等の奨学制度 があります。

選考基準は 学生本人の収入です。

(独)日本学生支援機構奨学金の貸与を 受ける場合には、学生本人からの申請が 必要です。選考等については、学生本人の 収入(定職、アルバイト、父母等からの給 付、その他奨学金等) 及び学業成績を基 に学内選考がなされ、(独)日本学生支援 機構へ推薦された後、機構の審査により 採用が決定します。

(独)日本学生支援機構奨学金のうち博 士前期(修士)課程学生が貸与を受けられ る金額は、無利子の第一種奨学金の場合 月額で5万円又は8万8千円です。

また、有利子の第二種奨学金は、月額5万 円、8万円、10万円、13万円、15万円の 中から選択することが可能で、選考の基準 をクリアすれば第一種奨学金と第二種奨 学金の併用貸与を受けることもできます。

(独)日本学生支援機構奨学金の申請は、 大学院へ進学する前に行う予約採用と4 月に募集される在学採用があります。予約

採用は、4月から大学院への入学を希望し ている学生を対象に前年の秋頃に募集を 行い、在学採用は入学後の4月に募集を 行います。

公益法人の奨学金等も含め、奨学金関係 の情報は学生ポータルまたは、大学掲示 板で学生の皆さんに案内します。学生サー ビス課までお気軽にお問い合わせください。

返還は月々1万円 程度から。

(独)日本学生支援機構奨学金は、大学 院を卒業してから返還していただく貸与奨 学金です。返還については、例えば、月額5 万円を2年間借りた場合、返還年数を12 年として利息を含めても、月々1万円程度 の金額で返還が可能です。

特に優れた業績による 迈環免除。

大学院において第一種奨学金(無利子) の貸与を受け、返還免除の申請をした結 果、在学中に「特に優れた業績 |をあげた 者として、日本学生支援機構から認定され た場合には、貸与期間終了時に奨学金の 全部または一部の返還が免除される制度 があります。

(無利子)第一種奨学金 50,000円/月

88,000円/月

(有利子)第二種奨学金

50,000円/月

80.000円/月

100,000円/月

130,000円/月

150,000円/月

2年間借りた場合の奨学金返還(月賦返還の例) 返還額:8,333円/月 総額 1,200,000円 (返還年数が12年(144回)の場合) 返還額: 10,055円/月 50,000円/ (第二種の場合 総額 1,448,002円 (返還年数が12年(144回)の場合) (元金+利息) (利率3.0%(上限)の場合)

TA制度

より深みのある学びのために。

ティーチング・アシスタント (Teaching Assistant)の略。 教員の指導を受けて、教育の補助業務(学生実験の指導など)を行う大学院生のこと。

TAに採用された学生は、教員の指導のも と学部学生をサポートしつつ、教えることを 通じて学び、指導者としてのトレーニングを 積み、主体的に学ぶ経験ができます。また、 従事時間に応じて手当(博士前期課程学 生時給1,100円、博士後期課程学生時 給1,300円)が支給されますので、学生生

活の支援にも繋がります。手当は多くはあ りませんが、自分自身の研究にも関連した 業務も多く、大変有意義なアルバイトとも 言えるでしょう。

また、博士後期課程学生になると、RA (Research Assistant)制度というものもあ ります。RAに採用された学生は、プロジェクト TA、RA制度について詳しく知りたい人は、 工学部運営管理課までお問い合せください。

研究等に研究補助者として参画し、自身の 研究と密接に関わる業務に携わり、研究遂 行能力を高められます。また、勤務時間に応 じて手当(時給1,300円)が支給されます。

利用者 の声

「指導力が向上した。」「実験の理解が深まった。」「学内での縦の繋がりを持つ機会ができた。」「給与面での支援がよかった。」 「大人数の前で話す練習になった。」「授業で教える事で復習になった。」「実験の準備等における要領や確認の大切さを学んだ。」

教務情報

大学院博士前期課程では、学生毎に POSコミティ(Program of Study Committee)を設け集団指導体制をとって おり、①カリキュラムのオーダーメイド化 ② プロジェクト型学習の推進といった「学生 の個性に応じた総合力を育む大学院教 育 |を実施しています。

【履修·成績·修了関係】

教務課教務(工学)担当では、授業に関す ること、履修に関する相談等に応じていま す。大学院学生便覧に掲載の教育課程 (カリキュラム)について、履修方法や単位 修得等わからないことがあれば、いつでもお 気軽にお尋ねください。

留学情報

【福井大学生の海外留学】

大学の留学制度には、主に①短期海外研修プログラム、②交換留学の2つがあります。 留学先での授業料免除、各種奨学金の受給や単位付与の可能性があるほか、出発前 から帰国後まで様々なサポートを受けることができます。

●短期海外研修プログラム

海外の大学等に1週間から3か月程度留 学し、語学研修、文化体験や学生交流、 フィールドワーク、専門分野の講義の受 講、学会発表や研究交流などを行います。 多様な渡航先・研修内容から、各学生の目 的や学習段階に合ったプログラムを選択し て参加することができます。

タイのシーナカリンウィロート大学で2週間 の文化・研究交流を行いました。

現地学生と研究について議論し、食事や

スポーツをする 時間はとても有 意義で、新たな 考えや意欲が 生まれました。

体験談

●交換留学

半年から1年間、福井大学の学術交流協 定校において、現地学生とともに正規開 講科目の履修や研究、語学集中コースの 受講等を行います。留学中も本学に在籍 することで、派遣先大学における授業料が 不徴収となるほか、留学期間は修了年限 に含むことができます。

アメリカのノースカロライナ州立大学で 約1か月半、マネジメントについて勉強し ました。分からないことがあれば積極的に

質問している現 地の学生の姿 が印象的かつ 刺激的でした。

体験談

海外留学の情報や相談、外国人留学生の受け入 れについては国際課までお問い合わせください。

▼ホームページ

https://www.u-fukui.ac.ip/international/

【外国人留学生の受け入れ】

福井大学では外国人留学生の受入れを 積極的に行っています。2019年5月1日現 在、24ヶ国・地域228名の留学生が福井 大学で学んでいます。留学生がスムーズに 学生生活を送れるよう、渡日直後・帰国前 オリエンテーション実施の他、在留資格に 関する手続き、奨学金申請、住居関係の 手続きなどの補助を行っています。また、レ ベル別の日本語授業の開講など、充実し た日本語学習環境を提供しています。

大学院というアドバンテージを活かすために。

最先端の知識と経験が要求される工学分野では、

博士前期(修士)課程まで含めた6年間の教育を受けた人材が求められています。

就職の際にも、学部卒よりも大学院卒の方が一般的には有利です。

また、同じ企業に就職しても、学部卒よりワンランク上の仕事を任される場合が多いでしょう。

工学研究科では、各専攻に就職担当の教員がおり、みなさんの相談に真剣に対応しています。

もちろん、大学院生の場合、指導教員に相談してみるのも一案でしょう。

福井大学では、「キャリア支援課」という強い味方もいます。

キャリア支援課では下記のような支援を行っています。

キャリア支援課の支援内容

就職情報の提供

企業などからの求人情報や就職関連本な どを揃えたキャリア支援課で、自由に情報を 入手できます。また、本学に対する企業など からの求人情報をデータベース化し、PC、 スマートフォンのweb上から閲覧できる「キャ リアサポートシステム」を構築しています。面 談等の予約申込を始め、就職ガイダンスの 録画映像もこのシステムを通して配信して います。

就職ガイダンスの開催

年間60回以上開催する就職ガイダンスで は、就職支援の専門家や先輩方による各 種講演会を行い、就職活動に慣れない学 生の不安解消に努めています。

キャリア相談

経験豊かなキャリアアドバイザーや就職担 当教員が、就職活動の悩みについて個別 相談に応じています。

就職についてのお問い合わせは、 キャリア支援課までお気軽にどうぞ。

模擬面接

キャリアカウンセラーによる模擬面接を毎日 実施しています(要予約)。ここで面接時の マナーや態度、発言内容に対する指導・助 言を行います。教員、公務員希望者にも対 応します。(Web面接も実施します)。

業界研究会・企業説明会

企業の情報収集やマッチングの機会とし て、学内合同企業説明会、学内個別企業 説明会を開催しています。OB・OG参加に よる業界・企業研究会では、4日間にわた り、約480社の企業が参加。また、OB・OG 参加による業界・企業研究会は1年中開 催しており、企業との出会いの場を通年で 設けています。

就職支援 13連覇

大学通信の2020年度調査による「全国大学実就職率ランキング」において、 複数学部を有する卒業生1,000人以上の国立大学で13年連続1位となりました。

入試について

「大学院、面白そうだね。」と思っている人た ちのために、大学院入試について説明し ます。

大学院は興味のあるモノをさらに探究でき る場です。

福井大学工学研究科には、工学系のほぼ 全分野にわたり様々な研究を行っている 先生方がいます。自分が研究したい分野 が決定したら、事前にその分野の先生にコ ンタクトをとってください。

「興味のあるモノ」を先生方と話すことで、

より具体的な研究・進学のアドバイスが得 られると思います。

先生の研究分野については、本学ホーム ページの「教育研究者検索」で確認してく ださい。

学部学生時代の成績が優秀である場合、 「推薦選抜 | で入学する方法があります。あ なたが本学の学生なら、まずは、助言教員 や指導教員に相談してください。また、社会 人や外国人留学生の場合には、特別選 抜で入学する方法もあります。

大学院入試の「過去問」については、本 学生協2F事務室(0776-21-2956 office@fu-coop.or.jp) へお問い合わせく

入試についてのお問い合わせは、 アドミッションセンター2階、入試課まで。

	博士前	博士後期課程(10月入学/4月入学)					
	推薦選抜 一般選抜/社会人特別選抜/ 外国人留学生特別選抜		一般選抜/社会人特別選抜/ 外国人留学生特別選抜				
募集要項公表	5月中旬						
募 集 人 員	全3専攻14コー	22名					
出 願 期 間	6月中旬	8月中旬	8月中旬				
選 抜 日	6月下旬	8月下旬	9月上旬				
合格者発表	選抜日後	選抜日後約2週間					
入学手続期間	11月	10月入学:9月下旬/4月入学:11月中旬					

出願資格など、詳しくは、各募集要項でご確認ください。

本学ホームページ(https://www.u-fukui.ac.jp)の「入試情報」には、入試に関するお知らせを掲載している場合があるので、ご確認ください。

学 生 支 援

学生相談

大学院では研究が中心となり、学部時代 とは大きく異なる学生生活になってきます。 長時間の実験や学会発表など、肉体的・ 精神的負担も大きくなりがちで、それに伴 いさまざまな悩みを抱え込む学生さんも少 なくありません。小さなことでも自分ひとりで 抱え込まずに誰かに相談することが大事 であり、相談することで、自分では気づかな かった解決策が見いだせる場合もありま す。学生総合相談室では、学業のこと、友

人や教員などとの人間関係、将来のことな ど、さまざまな相談に常駐しているカウンセ ラーが対応します。

何か悩みごとがあれば、どんな小さなことでも かまいませんので、気軽に学生総合相談室を

学生総合相談室

TEL:0776-27-9986,9987 E-Mail:g-soudan@ad.u-fukui.ac.jp HP:https://soudan.ad.u-fukui.ac.jp/ (福井大学HP→学生生活·就職→ 相談·意見·質問)

利用してください。私たちが悩みの解決策 を一緒に考えます。

障がいのある学生への支援

障がいのあるなどの理由により、修学上 何らかの支援が必要な学生の相談に 応じ、合理的配慮の提供に向けた調整

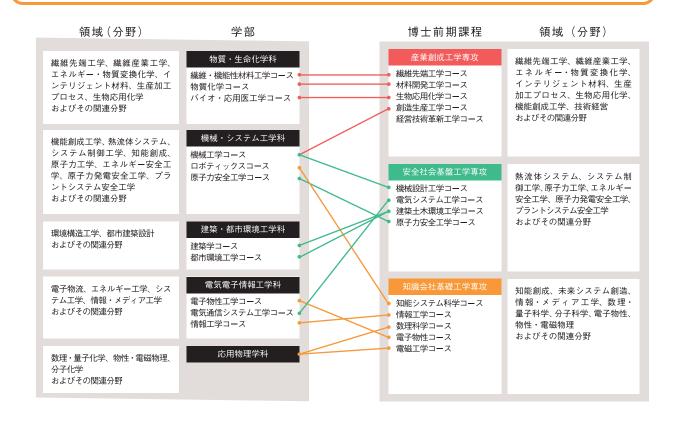
を行っています。修学面や学生生活面 において支障を感じたり、支援を受けた い場合は、右記までご相談ください。

保健管理センター TEL:0776-27-8513 学生総合相談室 TEL:0776-27-9986、9987 HP:https://www.u-fukui.ac.jp/cont_life/ confer/support/ (福井大学HP→)

2020年4月に「3専攻14コース体制」に改組

将来の産業構造の変革に対応できるスペシャリストとしての深い専門知識と同時に、ジェネラリストとしての幅広い知識・視野を持つ 人材を育成するため、産業分野を3つのグループ(ものづくり、社会インフラ、情報化社会基盤)に括り、各グループに対応する分野 横断型の専攻を、福井大学の強みも考慮して設置しました。各専攻の概要は以下の通りです。

産業創成工学専攻(ものづくり産業に対応)・


ものづくりを支える繊維、バイオ、化学、機械関連の工業技術と技術経営を融合し、繊維、眼鏡、炭素繊維複合材料といった地 域の特色ある産業から自動車や航空機、医工学機器等の各種産業の活力的な発展に資する研究開発とその教育を行い、繊維・機 能性材料の開発、ライフサイエンスの発展、ニーズに応えるものづくりや技術経営に根差した「ことづくり」を担う人材を育成する。

安全社会基盤工学専攻(社会インフラ産業に対応)。

エネルギーの安定的確保や持続可能な都市・地域のための社会基盤実現が社会から強く求められている中、そのような安全・安 心で快適・効率的な社会を創造し持続するために必要な社会の抱えているリスクの軽減や人類の利便性の向上に資する研究開発 とその教育を行い、持続可能な社会の創造に必要な技術革新に取り組み、新たな社会基盤技術の創出に貢献する人材を育成する。

知識社会基礎工学専攻(情報化社会基盤産業に対応)

第3次産業革命(情報・通信)および第4次産業革命(ロボット・知能システム)の技術革新を利活用して、人々が快適で活力 に満ちた質の高い生活を送ることのできる人間中心の社会(Society5.0)の実現に向けた、知識基盤社会に資する基礎研究およ びその教育を行い、Society5.0 で示された新しい知識・情報・技術が社会のあらゆる領域で活動の基盤として飛躍的に重要性を 増す社会である「知識基盤社会」を支える工学を担う人材を育成する。

Frontier Fiber Technology and Science

産業創成工学専攻

繊維先端工学コース

繊維・ファイバー工学に関する確固とした専門知識と倫理観を持ち、繊維系・化学系企業や研究機関をはじめ、繊維材料を利用する様々 な業種の研究開発に積極的に対応し、かつ問題解決のための専門知識を自ら継続的に修得できる能力を有する人材を育成します。

末 信一朗〔教授〕

繊維先端工学分野

- ・遺伝子工学を用いた新しい分子変 換素子の創製とバイオセンサや環境 に優しい技術への応用
- ・新しいバイオ技術で未来社会を実現

田上 秀. (数 授)

繊維先端工学分野

- 高分子成形加工で見られる熱・流動 計算。押出機を使った材料開発とそ の応用
- 研究開発に携わるための第一歩は 大学院進学です

中根 幸治 「数 授]

繊維先端工学分野

- 有機一無機ハイブリッド材料の形成 と応用(フィルムと繊維)
- 材料が進むと技術が進む。繊維材料 開発は技術の発展に欠かせません

久田 研次 〔教授〕

繊維先端工学分野

- ・界面を利用した分子の組織構造の 構築と機能発現
- 現代科学はまだまだ完璧ではありま せん. 探ればでてくる謎を解き明かし てみませんか?

植松 英之 〔准教授〕

繊維先端工学分野

- ・高分子の溶融レオロジーの観点から 成形加工性を制御する研究
- ・炭素繊維系コンポジトの成形加工に 関する研究

SAKAMOTO

Hiroaki

博昭 坂元 〔准教授〕

繊維先端工学分野

金属や繊維表面へ精密に分子修飾 された機能性材料の創出を目指しま す。さらに、得られた材料をエネルギー 変換・センシング材料として応用展開 します

和正 廣垣 〔准教授〕

繊維先端工学分野

超臨界流体や電子線による繊維・高 分子材料の機能加工、界面・コロイ ド化学を応用した構造発色材料の創 出に関わる研究に取り組んでいます

聡 〔准教授〕

繊維先端工学分野

藤田

- ・細胞レベルでの生命機能の制御を 目指したバイオマテリアルの開発と医 療への応用
- ・新しい材料で医学・生物学にイノ ベーションを起こそう!

平田 豊章 [講師]

繊維先端工学分野

・今や私たちの日常生活になくてはな らないものである高分子。その高分子 の構造と物性を理解し制御すること を目的として研究を行っています

浅井 華子 [助教]

繊維先端工学分野

・ナノ繊維という、1000分の1ミリメー トル未満の極細繊維を用いて、新た な機能性材料を作製したり その構 造と物性との関係について研究して

髙村 映一郎 [助教]

繊維先端工学分野

優れた機能が多く存在する生物。その ような生体機能の模倣応用を遺伝子 工学材料化学・電気化学等の様々 な手法を用いて目指しています。

山下 義裕 [教授]

繊維物性

ナノファイバーを用いた生体材料とマス クなどのフィルターの研究をしています。 また熱可塑性炭素繊維複合材料の 研究をしています。

〔客員教授〕

繊維産業工学分野

松田 光夫

MATSUDA Mitsuo

[客員准教授]

繊維産業工学分野 水嚢 満

MIZUNO Mitsuru

繊維産業工学分野

馬場 俊之

BABA Toshiyuki

Industrial Innovation Engineering

産業創成工学専攻

材料開発工学コース

持続可能な社会に貢献する新素材・機能性材料の開発に向けた独創的かつ論理的な研究にリーダーシップを持って取り組む能力を有し、 地域社会や国際社会で活躍できる高い倫理観とチャレンジ精神を兼備した人材を育成します。

内村 智博 〔教授〕

- エネルギー・物質変換化学分野
- 各種材料・環境試料の高精度分析 法の開発、反応状態解析法の開発
- 予想外の結果を楽しもう

佐々木 隆 〔教授〕

- インテリジェント材料分野
- ナノサイズの高分子材料の合成とそ のガラス転移ダイナミックス、結晶化、 融解挙動の研究
- 研究を通じて科学を楽しんでください

雄次 〔教授〕 徳永

- エネルギー・物質変換化学分野
- 分子認識のためのナノ空間設計とそ の創製

田新 英孝 〔教授〕

- 生産加工プロセス分野
- 高分子の合成と構造の橋渡しをする 反応工学的研究が専門です
- ・新発見を通じて自分の世界観が変わ る「目から鱗」の体験はヤミツキになり ます

保 〔教授〕 橋本

- エネルギー・物質変換化学分野
- ・精密重合による新構造・高性能高 分子の合成、分解・リサイクルが可能 な高分子材料の開発
- 資源循環型社会の形成に材料開発 の分野からアプローチします

入江 聡 〔准教授〕

- インテリジェント材料分野
- 透過電子顕微鏡法などを用いた有 機分子薄膜や高分子薄膜の構造形 成過程に関する研究

OKADA

Takashi

Yutaka

岡田 敬志 〔准教授〕

- エネルギー・物質変換化学分野
- ・高温融体を反応場とした分離・合 成・表面処理に関する研究を行って います。それによる、貴金属回収や環 境浄化を目的としたリサイクル材料・ 機能性材料の開発を目指しています

Jea-Ho

在虎 〔准教授〕

- エネルギー・物質変換化学分野
- 無機材料のうち含フッ素および含炭 素材料(高機能性炭素材料)につい て電気化学的デバイス等への応用を 中心として研究をしています
- ・ 自分の夢を持ちましょう!

壽一 [准教授] 阪 口

- エネルギー・物質変換化学分野
- 空気中から地球温暖化ガスや酸素を 取り出すための分離膜材料の研究。 ディスプレイや照明などに利用される 新しい発光高分子材料の研究

清 〔准教授〕

- 生産加工プロセス分野
- ・乳化重合等の不均一系ラジカル重 合の機構解明&高分子微粒子調製
- ・「学ぶ」「考える」「創る」「反響を見る」 の4大快楽を満喫しよう!

田中 穣 〔准教授〕

- インテリジェント材料分野
- ・コロイドのゾル―ゲル転移をレオロ ジーの観点から対象にして新しい材 料をつくっています。特にレオロジーと いう聞きなれないところにこだわって います

Masaya

NAITO

内藤 順也 [助教]

- エネルギー・物質変換化学分野
- ・望みの物質を創造する合成化学の 技術を用いて、音や圧力、光、熱など の外部刺激により運動性や集合能 を制御できる分子の創出に取り組ん でいます

産業創成工学専攻

生物応用化学コース

「化学」と「バイオテクノロジー」を基盤として、両者の学際領域における教育と研究を推進し、人類の健やかな生活と持続可能で豊か な社会の実現に貢献するための高い倫理観と高度な知識・技術を身につけた人材を育成します。

KONISHI

Yoshiyuk

〔教授〕

沖 昌也 〔教授〕

生物応用化学分野

・DNA配列に依存しない遺伝子発現 調節機構「エビジェネティクス」の研 究を行っています。新しい研究分野で まだまだ謎だらけです

慶幸

生物応用化学分野

小西

・脳神経回路がどのようなシステムに よって形成されるのかを、分子や細胞 のレベルで明らかにするとともに、こ れらを人為的に制御することを目指し ています

明彦〔教授〕 櫻井

生物応用化学分野

微生物や酸素を用いた環境浄化シ ステムの開発 新型バイオリアクター の開発、未利用資源を利用した有用 物質生産、担子菌による生理活性 物質の生産

SUGIHARA

杉原 伸治 [教授]

生物応用化学分野

・新しい精密(リビング)重合システム の開発 外部刺激応答性ポリマーの 合成と応用、自己組織化による種々 のナノ集合体合成

前田 寧 〔教授〕

生物応用化学分野

「生物にならったかしこい高分子」を 作り、その構造と機能を光を使った測 定を通して解明していくことを目標に して研究を進めています

里村 武範 [准教授]

生物応用化学分野

極限環境に生息する微生物が生産 する酸化還元酵素の機能解析とそ の応用方法の開発

鈴木 悠 [准教授]

生物応用化学分野

・シルクなどの天然高分子について、 立体構造を調べ機能との関係につ いて研究しています

一朗〔准教授〕

生物応用化学分野

髙橋

超分子による生理活性物質の捕捉、 弱プロトン酸を補助剤とする反応、環 境低負荷触媒の開発

流行に囚われることなくいつも三手 先を読めるように!

髙橋 透 〔准教授〕

生物応用化学分野

・専門は分析化学です。化学システム を駆使し、物質の"量"的情報だけで はなく"質"的情報を提供するための 新しい計測法を探求しています

寺田 聪 〔准教授〕

生物応用化学分野

・ヒトなど高等生物の細胞を活用しま す。細胞を用いてバイオ医薬品が生 産されたり、再生医療も実施されます が、その活用技術を開発しています

吉見 泰治〔准教授〕

生物応用化学分野

・紫外光を用いた環境に優しい新規な 有機反応の開発、およびその光反応 を利用したペプチドなどの生理活性 物質の直接的な化学変換による高 機能化

KAJITA Masashi

真司 [助教] 梶田

数理生物学

理論と定量データに基づく生命現象 の数理モデリングを通じて、生命の普 温的原理の理解、生命現象の予測・ 制御による医学・工学応用を目指し

岳志 [助教] 辻

染色体の構造がダイナミックに変動 することで、同じ遺伝子から様々な臓 器・器官への分化が可能になります。 この仕組みを人工的に作り制御する ことを目指しています。

TAKAHASHI

ています。

Industrial Innovation Engineering

産業創成工学専攻

創造生産工学コース

機械工学を基盤とし、ナノ・マイクロ・マルチスケールにおける材料の特性・設計・加工・評価に関する教育研究を通して、材料から製 品さらには寿命までを一気通貫で理解し、全体を俯瞰できる知識・技術を有して、創造的なものづくりを通して産業創成に貢献する人材 を育成します。

大津 雅亮 〔教授〕

機能創成工学分野

・ 鉄やアルミニウム、チタン、マグネシウ ムなどの金属に力を加えて変形させ て自動車や眼鏡などの金属部品を製 造する塑性加工について研究してい

本田 知己 [教授]

機能創成工学分野

- ・機能表面設計、ナノ・マイクロトライ ボロジー、潤滑油劣化診断、新材料 の摩擦摩耗解析、摩擦制御
- ・自分の能力に気づき、それを高める 楽しい研究がここにあります

岡田 将人 〔准教授〕

機能創成工学分野

- 超硬合金などの難削材加工や金属 表面の平滑化と改質層生成を同時 に実現するバニシング加工の研究
- ・皆さんと共に先端的な技術開発がで きる日を楽しみにしています

雅健 〔准教授〕

機能創成工学分野

- ・はんだや鉄鋼材料のクリーブ疲労寿 命評価に関する研究
- ユニークな実験研究による貴重なデー タを蓄積して、世の中に還元します

霄雯 〔准教授〕

機能創成工学分野

マクロな材料はナノスケールで見ると原 子や分子などミクロ構造で構成されてい る。理論・計算によりミクロな構造が力学 特性や機能を生み出すメカニズムに関 する研究を行なうことで、新しい機能を設 計するための知見の獲得を目的とする

三浦 拓也 [助教]

機能創成工学分野

主に金属材料を対象とした溶接・接 合技術の研究を行っています

Innovation and Management

Industrial Innovation Engineering

産業創成工学専攻

経営技術革新工学コース

産業活動を通じて得られた成果を科学的観点から工学的な進歩に関連づけ、新しい価値の創造とその社会提供に関する研究に主体的に取 り組み、地域産業界や地域社会の発展に寄与できる経営感覚とアントレプレナー精神を具備した人材を育成します。

竹本 拓治 〔教授〕

企業や組織の成長にアントレプレ ナーシップ人材が不可欠です。ことづ くり概念やシリアスゲームなど、従来と は異なる手法を応用できる柔軟な人 材を目指しましょう。

晋 米沢 〔教授〕

エネルギー・物質変換化学分野

- (産学官連携本部) ・「フッ素」を用いた材料開発を行って います。安全なリチウム電池をはじめ、 ニッケル水素電池、燃料電池などの 新しい材料を創製しています
- 皆さんは未来を変える「力」を持っています

光男 [講師]

・経営学、なかでも知識経営、技術経 営(MOT)の理論と実践の融合研究 「価値づくり」のために、「ものづくり」を どう活用するか、考えていきましょう

安全社会基盤工学専攻

機械設計工学コース

機械工学を基盤とし、熱流体システムにおけるエネルギー利用技術の高度化および機械システムにおける動的設計と計測制御に関する教 育研究を通して、ハードとソフトの両面から環境に調和した快適な社会生活を過ごすための安全・安心のものづくりを支え、高い倫理観 と高度な専門技術を有して、国際社会で活躍できる機械技術者を育成します。

鞍谷 文保 〔教授〕

システム制御工学分野

- 機械、自動車、楽器の振動・音の発 生機構や振動・騒音を低減するため の減衰発生機構の解明に取り組ん でいます
- 「継続は力なり」を信じて

永井 二郎〔教授〕

熱流体システム分野

- 沸騰急冷開始条件の解明、沸騰 データベース構築と機械学習、地中 熱利用システムの開発などを研究
- ・「熱」エネルギーの有効利用が世界を 救うことを信じて

山田 泰弘 [教授]

システム制御工学分野 機械システム、生産システム

MESHII Toshiyuki

飯井 俊行 [教授]

エネルギー安全工学分野

構造物の限界強度評価を可能とす るための研究を通じて、構造、材料を 安心して長期使用できるようにするた めの支援を行っています

太田 貴士 [准教授]

熱流体システム分野

・ 数値流体力学 利流の解析と制御 数値シミュレーションによって、複雑な 流体現象のメカニズムを解明し、現 象の予測と制御を実現するための基 礎的な研究

川井 昌之 [准教授]

システム制御工学分野 各種ロボットの研究

川谷 亮治 「准教授〕

システム制御工学分野

不安定メカニカルシステムの安定化 制御、柔軟構造物のロバスト振動制 御、自律移動型ロボットの制御、メカト ロニクス系のコンピュータ制御

酒井 康行 「准教授〕

熱流体システム分野 内燃機関の燃焼化学

田中 太 [准教授]

熱流体システム分野

散水設備(例:スプリンクラー)による 火災抑制性能と閉空間(例:トンネ ル)火災時における煙流動現象の解 明に取り組んでいます

FUKUSHIMA Akinori

啓悟 (講師) 福島

熱流体システム分野

数値計算を用いた包括的な伝熱現 象の解析を行っている。現在は主に、 分子シミュレーション及び電子状態計 算を用いたナノ構造体の特性解析を 行っている

吉田 達哉 [講師]

システム制御工学分野

建設機械の作業シュミレーションによ る自動化の研究、接触を伴う構造物 の動的応答解析

安全社会基盤工学専攻

電気システム工学コース

高度・知的情報処理システムを実現していくための基礎及び応用研究を行っており、主に以下の分野からなっております。

HASHIMOTO

Akihir

- システム工学・計測・制御、システム工学基礎、情報通信システム
- 回路・システム理論を基礎とした、新しいシステム技法やソフトウェア技術の研究分野
- 高速、高信頼かつ安全な情報通信のための通信方式、誤り制御符号、情報セキュリティに関する研究分野
- 情報の画像化と画像処理の研究分野

小原 敦美 〔教授〕

システム工学分野

・ロボット・ロケットの軌道制御、電気 自動車のモータ制御などの身近な理 工学分野でも有用なシステム制御と 最適化に関する研究を主に行ってい

橋本 明弘〔教授〕

エネルギー工学分野

高効率太陽電池用高品質半導体 結晶成長の研究及び次世代電子材 料であるナノカーボン系材料の研究 を行なっています。ナノワールドの匠

廣瀬 勝一〔教授〕

システム工学分野

安心して利用できる安全な情報通信 を実現するための暗号と情報セキュ リティに関する研究をしています

福井 一俊〔教授〕

電子物性分野

バンドギャップの広い半導体は紫外 線を出す発光ダイオードなどに使われ ます。そういう半導体の光学的な物性 を調べています

雅-伊藤 [准教授]

太陽光や風力などの変動する再生 可能エネルギーを、より多く、使いたい ときに使えるよう、再エネ自身の研究 と電力ネットワークの研究を行ってい ます。

栄龍 〔准教授〕

システム工学分野

・ ソフトコンピューティング、最適化問題 の近似アルゴリズム、画像処理

欣司 [准教授] 木村

システム工学分野

離散可積分系・計算機代数(数式 処理ソフトウェア)・数値線形代数ラ イブラリ(データサイエンスのための 基本ソフトウェア)の研究を行ってい

SAKAGUCHI Fuminori

坂口 文則 [准教授]

システム工学分野

微分方程式の整数型解法、作用素 代数の工学への応用、局在型の波 束と微分演算子の関係、統計的信 号処理

MORO Seiichiro

茂呂 征一郎 [准教授]

- システム工学分野
- 結合非線形発振系に見られる諸現
- 象の解析とその応用 大学院では知識の吸収だけでなく自 ら探求することが重要です

ASUBAR Joel

アスバル ジョエル タクラ 〔准教授〕

雷子物性分野

- 化合物半導体電子デバイス
- ・ 地球に優しい最先端の窒化ガリウム 系デバイスの設計と開発

重信 颯人 [助教]

電力システム分野

・ 電力系統と再エネが融合した電力シ ステムの解析・制御・運用を基に次 世代スマートグリッドに関する研究を しています。自分の手でエネルギーの 未来を切り拓きませんか。

TANABE Hidehiko

田邉 英彦〔助教〕

システム工学分野

インターネットや携帯電話などに用い られる通信システムにおいて、雑音等 によって生じる誤りを訂正・検出する 研究を行っています

安全社会基盤工学専攻

建築土木環境工学コース

建築・都市・地域・国土を対象に、理想的な社会・生活空間を探求します。環境構造工学分野では、安全・安心な建築物・土木構造物の実 現に向け、地球活動や自然エネルギーのコントロールと利用、構造システムの挙動などを教育研究し、都市建築設計分野では、建築・都市 空間における心理・生理・人間行動・社会生活などを軸に、社会科学・数理科学・人文科学の観点から教育研究を行います。

明石 行生 [教授]

都市建築設計分野

- ヒトと光の関わりを探究し、人と地球 にやさしいあかりを提案します
- 研究の合間には、イルミネーション・ イベントを楽しみましょう

石川 浩一郎 [教授]

ISHIKAWA

Koichiro

環境構造工学分野

- 金属系及び木質系建築構造物の応 答性能に基づく耐震性能評価
- 空間構造のアルバム(www.aloss.jp) をご覧ください

磯 雅人 [教授]

環境構造工学分野

- ・鉄筋コンクリート造建物の構造性 能評価、損傷制御、補修・補強、リ サイクル、工構法の開発
- 建築は奥深い分野です。建築をぜ ひ愛して下さい

川本 義海 〔教授〕

都市建築設計分野

人と環境に優しく、かつ持続可能な地 域社会の構築を支える交通のあり方 魅力的な都市空間づくりを実現するた めの、さまざまな計画思想やその具体 化手法について、産学官民が共働して 取り組む教育研究活動を行っています

啓介 [教授]

KOJIMA Keisuke

環境構造工学分野

小嶋

地形や地下構造と地震被害には密 接な関係があります。地表面から地 下構造を探査し、自然災害の被害 低減に役立てる研究をしています

慎二 [教授] 野嶋

都市建築設計分野

・気持ちの良い場所づくりをテーマに 建築や街路やコミュニティスペース などのアーバンデザインの実施や持 続可能なまちづくりの研究をしてい ます

井上 圭 (進教授)

環境構造工学分野

建物の地震応答性状に関する解 析的研究、建物の地震応答低減を 目指した構造システムの開発

菊地 吉信 [准教授]

都市建築設計分野

- ・ハウジング、住環境地計画 住みよい住環境を実現するための
- 手法についての研究と実践的活動 を行っています

啓悟 鈴木 [准教授]

環境構造工学分野

構造物の安全性を判断するためのモ ニタリング技術の研究や、超音波探 傷手法による目視困難な部位の可 視化に取り組んでいます

HONMA

MOMO

Yoshihisa

HARADA

陽子 〔准教授〕 原田

都市建築設計分野

持続可能な市民参加の都市再生 や地域資源を活かしたまちづくり・ 環境デザインについて、研究・活動 を行っています

藤本 明宏 [准教授]

環境構造工学分野

・専門は地盤工学ですが、雪や土壌 の熱・水分移動を得意とします。積 雪地における斜面や成十の安定問 題や道路の雪氷問題について研

寺崎 寛章 [講師]

環境構造工学分野

専門は環境水理学、水文学です。 研究は多岐にわたり、津波後の土 壌塩害調査やバングラデシュの飲 み水支援など、国内外を問わず

雅人 (講師)

都市建築設計分野

保育園、幼稚園、小中学校、図書館 など、子どもが使う施設を対象に子 どもたちの活動がより活発になるた めに、空間の使いこなし方について 研究しています。また、それらの施設 の建築設計にも取り組んでいます

本間 礼人 [講師]

環境構造工学分野

・コンクリート工事の施工改善、廃材 のリサイクル研究等を行っています

桃井 良尚 [講師]

都市建築設計分野

低環境負荷で、健康かつ快適な居 住環境を実現するための研究を 行っています。特に 気流利用空調 除湿空調、高効率換気空調、自然 換気をテーマとしています

山田 岳晴 [講師]

都市建築設計分野

建築のデザイン・復元・設計を研究。 専門は日本建築史・文化財学です。 時代は竪穴住居から近代建築まで、 神社・寺院・城・茶室・民家など、世 界に誇る日本建築が対象です

ASANO Shuhei

TERASAKI

Hiroaki

浅野

地域都市計画分野

持続可能な都市構造の実現に向け、 ます。

周平 [助教]

都市計画・交通計画の視点からコン パクトシティや次世代交通、交通関 連ビッグデータに関する研究をしてい System and Infrastructure Engineering for Safe and Sustainable Society

安全社会基盤工学専攻

原子力安全工学コース

本コースは、原子力発電及びその立地地域における安全性の確保、共生社会システムの構築、電力ネットワークの安定および放射線に関す る基礎研究と利用に関連した技術移転による地域産業の活性化や、原子力防災などの諸課題に関する実践的かつ多面的な教育・研究を行 います。

桑水流 理 〔教授〕

- エネルギー安全工学分野
- ・構造物の破壊や腐食など複雑現象 の高精度シミュレーション技術・設計 技術の開発
- 志は高く、自分に厳しく、人に優しく、 継続は力なり

TAMAGAWA

Yoichi

洋一〔教授〕 玉川

- エネルギー安全工学分野
- 弱い相互作用に関わる高エネルギー 実験や原子核実験に興味があります
- 学内の研究室ばかりでなく国内外の 研究施設でも実験しています

松尾 陽一郎 [准教授]

エネルギー安全工学分野

放射線生物学や放射線防護の研究 をしています。低線量放射線による生 体応答を解明し、その影響を細胞や DNAレベルで検出するための新手 法を開発することを目指します

ZUM

Yoshinobu

WATANABE Tadashi

KAWASAKI Daisuke

川崎 大介 [講師]

エネルギー安全工学分野

・原子力施設の廃止措置シナリオや 放射性廃棄物処分場の安全性の評 価手法に関して研究開発を行ってい ます

恭平 [講師] 中島

エネルギー安全工学分野

素粒子であるニュートリノの性質を調 べる二重ベータ崩壊探索や、原子炉 近距離におけるニュートリノ観測研究 に取り組んでいます

有田 裕 〔教授〕

原子力工学分野

- 高速炉燃料サイクルに関わる燃料・ 材料の研究
- ・日本の原子力基盤の一端を担ってみ ませんか

泉 佳伸〔教授〕

原子力工学分野

- ・放射線の生体影響、新規な放射線 量測定手法の開発、放射線生物学、 放射線化学全般
- やりがいのある研究、放射線に対す る正しい知識と確かなスキルで社会 に貢献しよう!

ONU Masayosh

宇埜 正美 〔教授〕

原子力工学分野

二酸化ウランペレットとジルコニウム合 金からなる原子炉燃料について、通常 運転時の物性変化から事故時の溶融 挙動までを模擬実験を中心に調べ、より 安全な原子力システムの確立と福島第 原子力発電所の廃炉に貢献します

FUKUMOTO Kenich

WILLEM

Van

Rooijen

福元 謙一〔教授〕

原子力工学分野

- ・照射効果研究からの原子力材料開 発、原子力構造材料の安全性評価
- これからの原子力の安全について福 井から技術研究の発信を行っていき ます

安田 仲宏 [教授]

原子力工学分野

- 国内外の研究機関や企業との連携 による新しい放射線計測技術開発
- 低線量被ばくの人体影響が研究室で 評価できる「細胞解析工場 |確立など

正 〔教授〕 渡辺

原子力工学分野

熱水力現象の物理から原子炉事故 まで、計算機を使った数値実験を 行っています

OHORI Michihiro

大堀 道広 [准教授]

原子力工学分野

原子力施設とその周辺地域の安全 性向上を念頭に、地震や津波の研 究・教育を行っております。

ファン ローイエン ウィレム

「准数捋〕

原子力工学分野

・原子炉物理学(原子炉における中 性子と物質の挙動)

[客員教授]

原子力工学分野

岡 潔

OKA Kivoshi

原子力工学分野

昌幸 釜谷

KAMAYA Masayuki

原子力工学分野

福谷 耕司

FUKUYA Koji

原子力工学分野

月森 和之

TSUK[MOR] Kazuyuki

[特命教授]

原子力工学分野 宮原 信哉

MIYAHARA Shinya

原子力工学分野 柳原 敏

YANAGIHARA Satoshi

[特命准教授]

原子力工学分野

石垣 将宏 YANAGIHARA Masahiro

[客員准教授]

原子力工学分野

歌野原 陽一

UTANOHARA Yoichi

知能システム科学コース

本コースは「生物・自然に学び、その成果を工学的に再構成し、知的で人に優しいシステムとして実現すること」を目的に教育研究を行う IMAGINEER の集団です。コンピュータやメカトロニクスを駆使するとともに、人間についても総合的な思考ができる IMAGINEER、すな わち、豊かな人間性を持った新しいタイプの技術者・研究者を育成し、地域・社会・産業界や豊かな人間社会の創出に貢献します。

小髙 知宏 [教授]

- 未来システム創造分野
- 情報安全工学やネットワークセキュリ ティに関する研究、また、知的行動の 工学的モデリングに関する研究を担 当している

黒岩 丈介 [教授]

知能創成分野

カオスの基礎とその応用について研 究し、人のような柔軟で卓越した情報 処理のメカニズムの解明や実現を目 指しています

髙田 宗樹〔教授〕

知能創成分野

非線形非平衡系にみられる「かたち」 に関心がある。特に、生体信号を扱 い、「立体映像による眼疲労と酔い の原因の特定 などに興味がある

髙橋 泰岳〔教授〕

未来システム創造分野

ヒューマン・ロボット・インタラクション、 ロボット学習、 パワー・アシスト・システム、テザー係 留飛行ロボット

浪花 智英〔教授〕

未来システム創造分野

· 学習制御·Model-Based適応制御、 ロボットハンドの協調制御、RT OSを 用いた制御系実装

平田 隆幸 〔教授〕

知能創成分野

- 非線形物理学、カオス制御、複雑系 科学、形の科学の研究
- 知の探求という大海原へ漕ぎ出そう

藤垣 元治 [教授]

未来システム創造分野

- ・ 光と画像を用いた3次元センシング
- 世界初の手法で高速・高精度・高安 定性を実現
- 宇宙で使える3次元光計測システムの 研究

浅井 竜哉 [准教授]

放射性薬剤を用いた生体代謝機構 の解析、ポジトロンCTによる生体情 報の画像化

小越 康宏 〔准教授〕

未来システム創造分野

・人間がもつ、たくさんの優れた能力。 その謎にせまるため、表情の認識や 表情の表出について 模倣学習時 の脳波特性について研究しています

片山 正純 [准教授]

知能創成分野

・人の認知と運動に関する脳内情報 処理メカニズムに関する研究、人の 身体音識と身体モデルに関する研 究、深層学習に基づいた人工知能 に関する研究

庄司 英一 [准教授]

未来システム創造分野

次世代の夢を拓く「人工筋肉」の開発。 妥協なしの自前の横断的な知識と技術 の追求により 世の中に役立つ 夢の 具体化に挑戦してます。詳細は研究室 ホームページの動画を!

田中 完爾 [准教授]

未来システム創造分野

- ・ロボット、計算機視覚
- 「迷子にならないロボット」を目指して、 視覚移動ロボットの研究開発を行っ ています

長宗 高樹 [准教授]

未来システム創造分野

私の研究室では、手術や診断を支援 する装置やシステムの開発を行って います。未来の医療がよりよいものに なる事を夢見て頑張っています

由章 (講師) 谷合

未来システム創造分野 トトやロボットの最適運動制御

築地原 里樹〔助教〕

人間情報学分野

人間の行動規節に基づくヒューマノ イドロボットの高速な動作生成や行 動計画や、ICT技術を用いた農地診 断を研究しています。

[客員准教授] 知能創成分野

[客員教授]

知能創成分野 長谷川 良平

前田

MAEDA Yoshikazu

HASEGAWA Ryouhei

情報工学コース

TACHIBANA

YAMAKAMI Tomoyuki

Ker

KAWAKAMI

Tomoya

本コースは、情報、通信、メディア工学の最新の専門知識を体系的に理解し、国内外における自由競争の環境下で、問題を自ら発掘・提起し、 独創的なアイデアをもって、解決を図ることのできる人材の育成を目標にしています。さらに大学院修了後も研究や学究の分野で、リーダ シップを発揮できるような高度の専門人材を、教員が一丸となって育成します。

橘 拓至〔教授〕

情報・メディア工学分野

全く新しい「新世代」の通信ネットワー ク技術について研究します。安全・安 心、SNS、有無線仮想化、データセン ター、等がキーワードです

彰吾 [教授]

Shogo

情報・メディア工学分野

東海

複数のビデオカメラによる多視点撮 影映像群を用いた動的な3次元状 況の理解と映像化

FUJIMOTO Mitoshi

/OSHIDA

Toshiyuki

HASEGAWA

Tatsuhito

藤元 美俊 〔教授〕

情報・メディア工学分野

- ・無線LAN、地上デジ、携帯電話など、 電波による通信を快適にするための 研究
- ・好きこそものの上手なれ。好きなこと を職業にしましょう

Shinichire

森 眞一郎 [教授]

情報・メディア工学分野

- ・スーパーコンピュータ、実時間シミュ レーション、可視化、並列処理、組込 みシステム
- ・ 高性能なコンピュータを創る醍醐味 を一緒に体験しましょう

山上 智幸 [教授]

情報・メディアT 学分野

- ・計算量理論、量子計算、暗号、ゲー ム理論、論理学、離散数学
- 才能に溢れた有望な若い学生を広く 募集しています

徳史 [教授] 山田

情報・メディア 丁学分野

・ミクロな世界では、壁にぶつかった ボールが壁をすり抜ける、という奇妙 な現象が起こります。この「トンネル現 象」の可視化などに取り組んでいます

俊之 [教授]

情報・メディア工学分野

吉田

画像処理・信号処理、特に画像符号 化、画像解析、3次元画像計測

WATA Ken -ichi

岩田 賢-〔准教授〕

情報・メディア工学分野

情報通信システムにおける情報源符 号、通信路符号、多端子情報理論に おける理論的限界を求めるとともにそ れを実現する符号化・復号法

樋口 健 〔准教授〕

情報・メディア工学分野

・早くて安いをモットーに、たくさんの データを効率的に処理するための データベースの研究をしています

福間 慎治 〔准教授〕

情報・メディア工学分野

ディジタル信号処理、画像・信号処理 技術の産業応用(繊維検査装置、脳 神経外科手術支援モニタリングシス テム、遠隔講義支援システムの開発)

長谷川 達人 [准教授]

情報・メディア工学分野

・ スマートフォンやウェアラブルデバイス の実生活への応用に関する研究をし ています。その過程で、多種のセンサ や機械学習等の技術を取り扱ってい ます

Mikio

MOR

幹男 [准教授] 森

情報・メディア工学分野

・音声・聴覚・音楽情報処理(骨導音 の音質改善・補聴器への応用、口笛 の発音原理の解明・演奏評価など)

川上 朋也 〔講師〕

モバイルコンピューティング

多数の機器を扱う分散環境を想定し、 モバイルコンピューティングや分散コ ンピューティング、ユビキタスサービス、 高度交通システム(ITS)などを研究

潮〔講師〕

情報・メディア工学分野

・本研究室では、カメラからの画像情 報を基に、人工知能や進化計算を用 いたコンピュータビジョン、パターン認 識に関する研究を行っています

HIROTA Yusuke

廣田 悠輔 [助教]

数值解析、高性能計算

・シミュレーションやデータ解析におい ては固有値計算手法をはじめとする 基礎的な数値計算手法が重要な役 割を果たします. 私は各種数値計算 手法の高速化・高精度化技術につ

いて研究しています.

数理科学コース

先端科学技術の基礎には物理学があり、その物理学は数学なしで記述することができません。新技術の創出には、その分野の基礎にある数 理的な論理をしっかりと理解し、応用できることが大きな強みとなります。本コースでは、数学、理論物理学、コンピュータシミュレーショ ンを専門とする教員が在籍し、科学技術の発展のために期待される数理的思考に長けた人材の育成に努めます。

古閑 義之 [教授]

数理·量子科学分野

・ 専門は数学で超リー代数という代数 系が研究テーマです。超リー代数は 物理とも関連する興味深い研究対 象ですが、多くの問題が未解決です

丈夫 [教授] 高木

数理·量子科学分野

- 低温物理学(絶対温度1K以下で起 こる現象)の研究をしています
- ・学問的な好奇心が原動力です。それ を失くさないでください

田嶋 直樹〔教授〕

数理·量子科学分野

- 核子の有限量子多体系として見た 原子核の理論的研究、主として平均 場模型に基づく研究
- 人の説明を鵜呑みにせず、必ず自分 なりに考えたいものです

橋本 貴明 [教授]

数理·量子科学分野

物質の最小単位である素料子に関 連した研究をしています。確率論的量 子場の理論、量子力学の幾何学的 側面

YASUKURA

Osami

保倉 理美 [教授]

数理・量子科学分野

リー群論。微分幾何学。特に、単純 リー代数の幾何学的特徴付け

古石 貴裕〔准教授〕

分子科学分野

コンピュータで原子や分子の動きを 再現し、液体、高分子、タンパク質な どの性質をナノスケールで調べてい

佐藤 勇二 [准教授]

数理·量子科学分野

自然界の基本構成要素である素粒 子についての理論的な研究をおこ なっています。特に、重力の量子論の 構築を目指した弦理論および関連す る分野の研究を進めています。

良則 [准教授] 玉井

分子科学分野

専門は高分子物理学および計算科 学。計算機シミュレーションにより高 分子材料設計や生体機能の解明を 進めています

'AMAI Yoshinor

Electronic Material

Fundamental Engineering for Knoeledge-Based Society

知識社会基礎工学専攻

電子物性コース

本コースは、電子・半導体物性と光物性分野の基礎知識の探求を通して、新しい電子材料、半導体材料、電子デバイス、光デバイスの開発に 関する研究を行っています。主に電子材料、半導体表面界面、電気エネルギー、量子エレクトロニクス、光エレクトロニクスの研究分野から 構成されています。

金邊 忠 [教授]

電子物性分野

・高出力・超高強度レーザー開発や レーザーエネルギー利用、宇宙太陽 光発電用の高効率・高出力レーザー の設計・開発、核融合用レーザーの 設計開発

謙次 〔教授〕 塩島

電子物性分野

- ・半導体物性、電極界面の評価、新機 能半導体デバイスの作製
- 半導体の謎解きにチャレンジしてみま せんか

栄 〔准教授〕 川戸

電子物性分野

- レーザーを作って、いろいろな分野へ 応用する研究をしています
- やりたいことを見つけるため、いろいろ な経験をしましょう

哲征 〔准教授〕 牧野

エネルギー工学分野

新エネルギー科学に関する分光学的 研究を行っている。環境調和性を留 意しつつ、エネルギー問題解決に資 する新材料や新分光評価法を開発 している

晃司〔准教授〕

Kohj

山本 電子物性分野

- 携帯電話で使っている電波の1000 倍の周波数の電波を使った研究を
- これからの高周波数化へ向かう社会 の先端を目指そう

電磁工学コース

物性・電磁物理分野(物性物理学、放射線・粒子線物理学、素粒子物理学)、分子科学分野(物理学と化学を横断する境界領域である物理化学) の2分野と、世界最高水準の遠赤外高出力光源「ジャイロトロン」を有する遠赤外領域開発研究センターの教員が、協力しながら教育・研 究を担当します。

社会の基盤技術の維持・発展を行うための電磁工学の知識・技術を学んでいきます。

菊池 彦光 〔教授〕

物性·電磁物理分野

・低次元反強磁性体における量子効 果、スピンフラストレート磁性体の磁性

能會 光孝 〔教授〕

物性·電磁物理分野

レーザー冷却を始めとする原子・ナノ 粒子の運動状態および内部状態の

陣 競鳶 〔教授〕

分子科学分野

- 界面における電荷移動過程の物理 化学・エネルギー科学
- ・自然を感知・解読できる自分のため、 知的好奇心を満たす道へ

吉田 拓生 [教授]

物性·電磁物理分野

- 高Tネルギー粒子加速器を用いた素 粒子実験や宇宙背景ニュートリノ探 索実験
- ・大学院は魅力ある研究テーマの宝 庫です

Takayuki

ASANO

浅野 貴行 〔准教授〕

物性·電磁物理分野

量子スピン系及び継何学的競合系 の磁気的性質や新規機能性材料の

小川 泉 〔准教授〕

物性,雷磁物理分野

- 放射線測定を用いた宇宙・素粒子・ 原子核研究
- 二重ベータ崩壊・ダークマター探索な ど放射線を利用して宇宙の謎を探り

西海 豊彦〔准教授〕

分子科学分野

- ・1段階多電子移動有機分子の合成 と電気化学測定
- 一度に雷子を沢山動かして、高速応 答の2次電池や、太陽電池を作ります

守安 毅 〔講師〕

物性,雷磁物理分野

・「光と物質の相互作用」という言葉を テーマにレーザーやテラヘルツ光源 を駆使して研究を行っていきます

立松 芳典 〔教授〕

物性·雷磁物理分野

高出力サブミリ波ジャイロトロン及び 伝送系システムの開発

Masahiko

正彦 〔教授〕

物性·雷磁物理分野

・テラヘルツ電磁波の発生と検出法 の開発、テラヘルツ時間領域分光法、 テラヘルツ雷磁波の各種計測応用. テラヘルツ帯コヒーレントアンチストー クスラマン分光

光藤 誠太郎 [教授]

物性·電磁物理分野

・遠赤外光源ジャイロトロンの開発とそ の物性研究への応用

藤井 裕 〔准教授〕

- 物性·電磁物理分野
- 極低温・強磁場という極限環境下で 現れる物質の磁気的性質を磁気共 鳴測定等により研究しています
- 研究を通してともに成長しましょう

SISON Escaño

エスカニョ メアリ クレア スイソン [准教授]

物性·電磁物理分野

第一原理計算法による磁気システム の構造、磁気相転移、輸送特性を研 究しています

石川 裕也 [助教]

物性·電磁物理分野

- ・超低温・高磁場領域における磁気 特性解明及び測定装置開発。
- ロンを用いた磁気共鳴システムの開 発及びその応用。

Masafumi

福成 雅史 [助教]

プラズマ工学

・ミリ波・サブミリ波帯の大電力光源の 開発と、その応用としてミリ波放電、 ビーミング推進、電力伝送の研究を 行っています。

古屋 岳 〔助教〕

物性·電磁物理分野

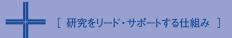
分子分光の研究をしています。また、 その光源となるテラヘルツ波の発生 や検出の研究をしています

FUJI

Yutaka

物性·電磁物理分野

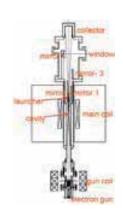
テラヘルツ帯で動作するジャイロトロ ています



山口 裕資 [助教]

ンを用い、荷電粒子と電磁波の相互 作用について研究しています。現在、 特に高性能電子銃の開発に注力し

・大学院で共に学び成長しましょう!



工学研究科の教育と研究をサポート。

専門性の高い施設とセンターが高度な工学の研究、学習を応援します。

遠赤外領域開発研究センター

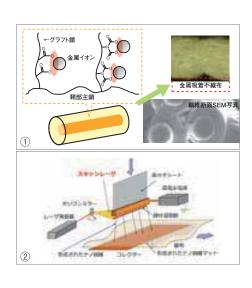
遠赤外領域開発研究センターは、電波と光の中間に位置する新しい電磁波領 域「遠赤外光/テラヘルツ波」を総合的に開発研究しています。独自開発の高 出力テラヘルツ波源「ジャイロトロン」をさらに高性能化し、物質科学・生命科 学・素粒子物理学・新機能材料開発・エネルギー科学等の広範な領域で新し い研究に適用するとともに、新方式テラヘルツ波発生・分光法を開発していま す。図は最近開発した高性能ジャイロトロンの断面図と写真です。本センター は、国内外多数の研究機関と学術交流協定及び共同研究覚書を締結してグ ローバルな研究協力を展開し、遠赤外領域研究の世界的拠点としても注目さ れています。

附属国際原子力工学研究所

福井県嶺南地域の豊富な原子力関連施設を活用した原子力の基礎・基盤研 究及び応用研究を進めていくとともに、原子力の安全性向上、防災危機管理 の向上に資する研究、地震・津波に強い原子力システムの開発、適切かつ迅 速な放射線防護対策等の研究をはじめ、仏国、米国をはじめとする海外の研究 機関との学術交流を通した国際的な原子力安全基盤研究を進めていきます。 また、仏国、米国をはじめ、インドネシア、ベトナム、モンゴル等のアジア諸国から 留学生、研究者等を受け入れ、質の高い国際的な人材育成を行います。 さらに、北陸・中京・関西圏の大学、研究機関との連携、福井県内の原子力関

繊維・マテリアル研究センター

連施設を核とした研究拠点の形成を推進していきます。


福井大学と地域の双方が強みを持つ研究分野である繊維・機能性材料工学 分野の研究・開発を地域と協働で行う体制を強化するために、2019年4月に 設立しました。日本の元気な繊維産地をもっと元気にすること、みなさんに役に 立つセンターになること、さらに世界の繊維・マテリアル研究分野の発信基地 になることを目指して、活動を展開しています。

研究例:①

福井大学が長年培ってきた電子線加工技術を基礎に、レアメタルなどの金属 イオンを選択的に、吸着・回収できる不織布の開発に成功

研究例:②

線状レーザ溶融静電紡糸法の開発により、食品工業、メデイカルなどの分野で 要求される高透水量の精密ろ過膜として、ナノファイバーマットの量産化に成功

産学官連携本部

産学官連携推進部門

学内外から要請される産学官連携活動を的確かつ迅速にコーディネートする組織です。産学官連 携本部の内部・外部の窓口となる連携企画部、大学院生が関わることも多い共同研究の窓口とな る共同研究推進部、学生や教育の独創的アイデアを発掘し、事業として育てたり、起業化に向けた 教育研究をサポートする産業人材育成部、大学院生の研究でもお世話になることの多い分析や計 測技術を支援する附属テクニカルイノベーション共創センターの4つの部で構成されています。

研究統括部門

研究者とともに、研究活動の企画・マネジメント、研究成果活用推進を行い、研究活動の活性化や 研究開発マネジメントの強化を目的とした組織です。大学院生も加わる可能性のある政府資金研 究プロジェクトの申請、契約から成果報告までのサポートなどを行う研究・企画管理部、研究を通じ て得られた知的財産をしっかりサポートする知的財産・技術移転部の2つの部で構成されています。

山口 光男 [講師]

・経営学、なかでも知識経営、技術経 営(MOT)の理論と実践の融合研究 「価値づくり」のために、「ものづくり」を どう活用するか、考えていきましょう

地域創生推進本部

産学官連携本部、産業化研究特区とともに、福井大学産学官連携・地域イノベーション推進機構の一翼を担っています。当本部で は、公開講座をはじめとして「福井大学きてみてフェア |などの事業を通じて、広く地域のみなさまへ福井大学の教育や研究を還元し、 キャリアアップや生涯学習を支援しています。

また、県内自治体との包括的連携協定や、 本学教職員学生と各種団体との連携を通 じ、地域との連携を推進しています。

大久保 貢 [教授]

地域人材育成における高大接続と して、高校における探究的な学びへ の支援を通して高校で育む資質と大 学が求める資質の橋渡しを行い、高 大連携活動を推進しています。

竹木 拓治 〔教授〕

・企業や組織の成長にアントレプレ ナーシップ人材が不可欠です。こと づくり概念やシリアスゲームなど、従 来とは異なる手法を応用できる柔軟 な人材を目指しましょう。

Yoshinobu

虎尾 憲史 [教授]

・留学生向けの日本語教育を専門とし、 博士前期課程では「工業日本語特 論1・11 という科目を担当しつつ、留 ー-学生支援業務にも従事しています。

総合情報基盤センター

教育や研究、大学運営に必要な情報処理環境を提供するとともに、学生や教職員などの構成員にとっ て不可欠な大学のネットワークの管理運営を行うセンターです。大規模な計算や大容量データ処理を行う 科学技術計算、医療情報処理計算という役割だけでなく、学内ICT環境の向上に向けた指導・支援も行っ ています。

また、近年問題となっている情報セキュリティ向上に対する指導・支援にも力を入れており、これらの活動を 通じて、大学院における教育の向上と研究の推進をサポートしています。

OGAITO Tatoku

大垣内 多徳 [准教授]

情報ネットワーク分野

情報システムや情報ネットワークにつ いて、利便性、安全性、高可用性と低 運用コストを両立させる手法について 考えています。

国際センター・語学センター

国際センター及び語学センターは、英語教育の他、外国人留学生に対して日本語・日本文化・日本事情 に関する教育を実施するとともに、外国人留学生に、修学上、生活上の指導助言を行っています。また、

学生をグローバル人材として育成するために、語学力や異文化 理解力などを培う海外研修プログラムの実施や、海外派遣支援 金の支給等を行っています。

本学には、24ヶ国・地域から228名(2019年5月1日時点)の 外国人留学生が在学しており、日本人学生との交流、地域社会 との交流を推進しています。帰国留学生が組織する福井大学 留学生同窓会も14ヶ国・地域に17支部まで広がっており、今後 も本学は、帰国留学生との強固なネットワークを築いていきます。

留学生との交歓会

明石 行生

国際センター長・語学センター長 国際センターでは、外国人留学生の 受入と日本人学生の派遣、語学セン ターでは、共通教育の英語と留学生 の日本語教育について、担当教員と 国際課職員と共に支援しています。

高度人材育成センター

本センターは、工学研究科の「学生の個性に応じた総合力を育む 大学院教育」を支援しています。本センターは、つぎの5部門から構 成されています。(1)地域と連携したプロジェクト型学習(PBL)を 支援する「地域連携部門」、(2)学生主体プロジェクト研究や ティーチングアシスタント、リサーチアシスタントを支援する「修学・研 究支援部門」、(3)英語を中心とした外国語教育を実施する「外国 語教育部門」、(4)産学官連携本部などと連携し自律型産業人材 育成のための実践教育を支援する「実践大学院工学教育部門」、 (5)長期インターンシップを統括する「派遣型大学院工学教育部 門 |。各部門が提供する様々な教育により大学院生一人ひとりが 総合力(専門力・応用力・即戦力)を養えるように支援します。

※2021年度に整理・統合予定

大学院教育の実施・組織的サポート

プロジェクト型学習の 実施を支援

長期インターンシップによる 派遣型教育を実施

創業型実践大学院 工学教育と産業現場に 即応する実践道場

修学·研究支援部門

TA·RA、学生主体 POSの統括

外国語教育部門

工学部・工学研究科の 外国語教育の統括

先端科学技術育成センター

アイデアを実現する創 造的エンジニアの育成 を創成教育、精密工作、 地域連携の面から支援 するとともに、教員の研 究活動や学生の創成 活動(ロボット製作など) も支援します。

附属超低温物性実験施設

液体窒素や液体ヘリウ ムを用いた超低温領域 での実験研究を行う施 設で、研究に必要な液 体窒素や液体ヘリウム の製造・供給及び使用 後のヘリウムガスの回 収も担います。

ライフサイエンスイノベーションセンター

学部の枠を越えて生命 科学に関連する幅広い 分野の教育と先端的生 命科学研究を高水準で 推進するとともに、医学 や生命科学を理解し応 用できる優れた技術者 を育成します。

地域環境研究教育センター

地域に密着した環境問 題を調査し、地域の環 境を保全・改善するため の研究を行っており、環 境に対する一般の方々 の理解を支援するため の環境教育も重要視し ています。

附属図書館

保健管理センター

語学センター

国際交流学生宿舎

IMAGINEER = Imagine + Engineer

心に描いてみよう。

技術が生み出すモノの向こうにある人々の暮らしを。 モノをつくることは生活をデザインすること。

心に描いてみよう。

将来の自分の姿を。 どんな姿を目指そうとしているのか? 今、そのために何をするべきなのか?

ここでの2年間で、自分を進化させるための 「志」を磨いてみよう。

